Data from: A test of the hierarchical model of litter decomposition

  • Mark Bradford (Creator)
  • Ciska Veen (Creator)
  • A. Bonis (Creator)
  • Ella M. Bradford (Creator)
  • Aimée T. Classen (Creator)
  • J.H.C. Cornelissen (Creator)
  • Tom Crowther (Creator)
  • Jon De Long (Creator)
  • G.T. Freschet (Creator)
  • Paul Kardol (Creator)
  • Marta Manrubia-Freixa (Creator)
  • Daniel S. Maynard (Creator)
  • G.S. Newman (Creator)
  • R. Van Logtestijn (Creator)
  • Maria Viketoft (Creator)
  • David A. Wardle (Creator)
  • W.R. Wieder (Creator)
  • S.A. Wood (Creator)
  • Wim H. van der Putten (Creator)



Our basic understanding of plant litter decomposition informs the assumptions underlying widely applied soil biogeochemical models, including those embedded in Earth system models. Confidence in projected carbon cycle-climate feedbacks therefore depends on accurate knowledge about the controls regulating the rate at which plant biomass is decomposed into products such as CO2. Here, we test underlying assumptions of the dominant conceptual model of litter decomposition. The model posits that a primary control on the rate of decomposition at regional to global scales is climate (temperature and moisture), with the controlling effects of decomposers negligible at such broad spatial scales. Using a regional-scale litter decomposition experiment at six sites spanning from northern Sweden to southern France – and capturing both within and among site variation in putative controls – we find that contrary to predictions from the hierarchical model, decomposer (microbial) biomass strongly regulates decomposition at regional scales. Further, the size of the microbial biomass dictates the absolute change in decomposition rates with changing climate variables. Our findings suggest the need for revision of the hierarchical model, with decomposers acting as both local- and broad-scale controls on litter decomposition rates, necessitating their explicit consideration in global biogeochemical models.
Date made available25 Aug 2018

Dataset type

  • Processed data
  • A test of the hierarchical model of litter decomposition

    Bradford, M. A., Veen, G. F., Bonis, A., Bradford, E. M., Classen, A. T., Cornelissen, J. H. C., Crowther, T. W., De Long, J. R., Freschet, G. T., Kardol, P., Manrubia, M., Maynard, D. S., Newman, G. S., Van Logtestijn, R., Viketoft, M., Wardle, D. A., Wieder, W. R., Wood, S. A. & van der Putten, W. H., 2017, In: Nature Ecology and Evolution. 1, p. 1836-1845

    Research output: Contribution to journal/periodicalArticleScientificpeer-review

    Open Access
    179 Citations (Scopus)
    253 Downloads (Pure)

Cite this