PRJEB48727: Eucalypt species genotype drives rhizosphere bacterial and fungal community assembly but soil P availability rearranges the microbiome

  • R.G. Bulgarelli (Creator)
  • Marcio Fernandes Alves Leite (Creator)
  • Mattias De Hollander (Creator)
  • P. Mazzafera (Creator)
  • Sara Adrián Lopez de Andrade (Creator)
  • Eiko Kuramae (Creator)



Soil phosphorus (P) availability may limit plant growth and alter root-soil interactions and rhizosphere microbial community composition. The composition of the rhizosphere microbial community can also be shaped by plant genotype. In this study, we examined the rhizosphere microbial communities of young plants of 24 species of eucalypts (22 Eucalyptus and two Corymbia species) under low or sufficient soil P availability. The taxonomic diversity of the rhizosphere bacterial and fungal communities was assessed by 16S and 18S rRNA gene amplicon sequencing. The taxonomic modifications in response to low P availability were evaluated by principal component analysis, and co-inertia analysis was performed to identify associations between microbial community structure and parameters related to plant growth and nutritional status under low and sufficient soil P availability. The sequencing results showed that while both soil P availability and eucalypt genotype influenced the microbial community assembly, eucalypt genotype was the stronger determinant. In response to low P, the bacterial and fungal communities in the rhizospheres of some species showed significant changes, whereas in others remained relatively constant under low and sufficient P. Co-inertia analyses revealed a significant co-dependence between plant nutrient contents and bacterial and fungal community composition only under sufficient P. By contrast, under low P, bacterial community composition was related to plant biomass production. In conclusion, our study shows that eucalypt species identity was the main factor modulating rhizosphere microbial community composition; significant shifts due to P availability were observed only for some eucalypt species.
Date made available24 Nov 2022
PublisherEuropean Nucleotide Archive (ENA)

Cite this