TY - JOUR
T1 - A 3-year study reveals that plant growth stage, season and field site affect soil fungal communities while cultivar and GM-trait have minor effects
AU - Hannula, S.E.
AU - De Boer, W.
AU - Van Veen, J.A.
N1 - Reporting year: 2012
Metis note: 5227; WAG; ME
PY - 2012
Y1 - 2012
N2 - In this three year field study the impact of different potato (Solanum tuberosum L.) cultivars including a genetically modified (GM) amylopectin-accumulating potato line on rhizosphere fungal communities are investigated using molecular microbiological methods. The effects of growth stage of a plant, soil type and year on the rhizosphere fungi were included in this study. To compare the effects, one GM cultivar, the parental isoline, and four non-related cultivars were planted in the fields and analysed using T-RFLP on the basis of fungal phylum specific primers combined with multivariate statistical methods. Additionally, fungal biomass and some extracellular fungal enzymes (laccases, Mn-peroxidases and cellulases) were quantified in order to gain insight into the function of the fungal communities. Plant growth stage and year (and agricultural management) had the strongest effect on both diversity and function of the fungal communities while the GM-trait studied was the least explanatory factor. The impact of cultivar and soil type was intermediate. Occasional differences between cultivars, the amylopectin-accumulating potato line, and its parental variety were detected, but these differences were mostly transient in nature and detected either only in one soil, one growth stage or one year.
AB - In this three year field study the impact of different potato (Solanum tuberosum L.) cultivars including a genetically modified (GM) amylopectin-accumulating potato line on rhizosphere fungal communities are investigated using molecular microbiological methods. The effects of growth stage of a plant, soil type and year on the rhizosphere fungi were included in this study. To compare the effects, one GM cultivar, the parental isoline, and four non-related cultivars were planted in the fields and analysed using T-RFLP on the basis of fungal phylum specific primers combined with multivariate statistical methods. Additionally, fungal biomass and some extracellular fungal enzymes (laccases, Mn-peroxidases and cellulases) were quantified in order to gain insight into the function of the fungal communities. Plant growth stage and year (and agricultural management) had the strongest effect on both diversity and function of the fungal communities while the GM-trait studied was the least explanatory factor. The impact of cultivar and soil type was intermediate. Occasional differences between cultivars, the amylopectin-accumulating potato line, and its parental variety were detected, but these differences were mostly transient in nature and detected either only in one soil, one growth stage or one year.
KW - NIOO
U2 - 10.1371/journal.pone.0033819
DO - 10.1371/journal.pone.0033819
M3 - Article
SN - 1932-6203
VL - 7
JO - PLoS One
JF - PLoS One
IS - 4
M1 - e33819
ER -