TY - JOUR
T1 - Actinomycete integrative and conjugative pMEA-like elements of Amycolatopsis and Saccharopolyspora decoded
AU - Te Poele, E.M.
AU - Samborskyy, M.
AU - Oliynyk, M.
AU - Leadlay, P.F.
AU - Bolhuis, H.
AU - Dijkhuizen, L.
N1 - Reporting year: 2008
Metis note: 4414;CEME; MM; file:///C:/pdfs/PDFS2008/TePoele_ea_4414.pdf
PY - 2008
Y1 - 2008
N2 - Actinomycete integrative and conjugative elements (AICEs) are present in diverse genera of the actinomycetes, the most important bacterial producers of bioactive secondary metabolites. Comparison of pMEA100 of Amycolatopsis mediterranei, pMEA300 of Amycolatopsis methanolica and pSE211 of Saccharopolyspora erythraea, and other AICEs, revealed a highly conserved structural organisation, consisting of four functional modules (replication, excision/integration, regulation, and conjugative transfer). Features conserved in all elements, or specific for a single element, are discussed and analysed. This study also revealed two novel putative AICEs (named pSE222 and pSE102) in the Sac. erythraea genome, related to the previously described pSE211 and pSE101 elements. Interestingly, pSE102 encodes a putative aminoglycoside phosphotransferase which may confer antibiotic resistance to the host. Furthermore, two of the six pSAM2-like insertions in the Streptomyces coelicolor genome described by Bentley et al. [Bentley, S.D., Chater, K.F., Cerdeno-Tarraga, A.M., et al., 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417, 141–147] could be functional AICEs. Homologues of various AICE proteins were found in other actinomycetes, in Frankia species and in the obligate marine genus Salinispora and may be part of novel AICEs as well. The data presented provide a better understanding of the origin and evolution of these elements, and their functional properties. Several AICEs are able to mobilise chromosomal markers, suggesting that they play an important role in horizontal gene transfer and spread of antibiotic resistance, but also in evolution of genome plasticity.
AB - Actinomycete integrative and conjugative elements (AICEs) are present in diverse genera of the actinomycetes, the most important bacterial producers of bioactive secondary metabolites. Comparison of pMEA100 of Amycolatopsis mediterranei, pMEA300 of Amycolatopsis methanolica and pSE211 of Saccharopolyspora erythraea, and other AICEs, revealed a highly conserved structural organisation, consisting of four functional modules (replication, excision/integration, regulation, and conjugative transfer). Features conserved in all elements, or specific for a single element, are discussed and analysed. This study also revealed two novel putative AICEs (named pSE222 and pSE102) in the Sac. erythraea genome, related to the previously described pSE211 and pSE101 elements. Interestingly, pSE102 encodes a putative aminoglycoside phosphotransferase which may confer antibiotic resistance to the host. Furthermore, two of the six pSAM2-like insertions in the Streptomyces coelicolor genome described by Bentley et al. [Bentley, S.D., Chater, K.F., Cerdeno-Tarraga, A.M., et al., 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417, 141–147] could be functional AICEs. Homologues of various AICE proteins were found in other actinomycetes, in Frankia species and in the obligate marine genus Salinispora and may be part of novel AICEs as well. The data presented provide a better understanding of the origin and evolution of these elements, and their functional properties. Several AICEs are able to mobilise chromosomal markers, suggesting that they play an important role in horizontal gene transfer and spread of antibiotic resistance, but also in evolution of genome plasticity.
U2 - 10.1016/j.plasmid.2008.01.003
DO - 10.1016/j.plasmid.2008.01.003
M3 - Article
SN - 0147-619X
VL - 59
SP - 202
EP - 216
JO - Plasmid
JF - Plasmid
IS - 3
ER -