TY - JOUR
T1 - Animal Bone Char Solubilization with Itaconic Acid Produced by Free and Immobilized Aspergillus terreus Grown on Glycerol-Based Medium
AU - Vassilev, N.
AU - Medina, A.
AU - Eichler-Lobermann, B.
AU - Flor-Peregrin, E.
AU - Vassileva, M.
N1 - Reporting year: 2012
Metis note: 5393; WAG; ME
PY - 2012
Y1 - 2012
N2 - Cells of Aspergillus terreus, free and immobilized in polyurethane foam, were employed in itaconic acid fermentation processes on glycerol-based media. The purpose was to assess their suitability for animal bone char solubilization and the development of a biotechnological alternative to P fertilizers chemically produced from rock phosphate. Animal bones constitute a renewable source of P that can replace the traditionally used finite, nonrenewable rock phosphate as a P source. Glycerol was an excellent substrate for growth (10.2 g biomass L−1) and itaconic acid production (26.9 g L−1) by free fungal cells after 120-h fermentation. Simultaneously, A. terreus solubilized the insoluble phosphate to a yield of 23 to 50 %, depending on the particle size and concentration. Polyurethane foam cut into cubes of 0.5–0.6 cm per side, with 0.3 mm pore size and applied at 2.0 g L−1 proved to be an excellent cell carrier. In repeated batch fermentation, the immobilized mycelium showed a high capacity to solubilize animal bone char, which resulted on average in 168.8 mg L–1 soluble phosphate per 48-h cycle and 59.4 % yield (percent of total phosphate) registered in the fourth batch
AB - Cells of Aspergillus terreus, free and immobilized in polyurethane foam, were employed in itaconic acid fermentation processes on glycerol-based media. The purpose was to assess their suitability for animal bone char solubilization and the development of a biotechnological alternative to P fertilizers chemically produced from rock phosphate. Animal bones constitute a renewable source of P that can replace the traditionally used finite, nonrenewable rock phosphate as a P source. Glycerol was an excellent substrate for growth (10.2 g biomass L−1) and itaconic acid production (26.9 g L−1) by free fungal cells after 120-h fermentation. Simultaneously, A. terreus solubilized the insoluble phosphate to a yield of 23 to 50 %, depending on the particle size and concentration. Polyurethane foam cut into cubes of 0.5–0.6 cm per side, with 0.3 mm pore size and applied at 2.0 g L−1 proved to be an excellent cell carrier. In repeated batch fermentation, the immobilized mycelium showed a high capacity to solubilize animal bone char, which resulted on average in 168.8 mg L–1 soluble phosphate per 48-h cycle and 59.4 % yield (percent of total phosphate) registered in the fourth batch
KW - international
U2 - 10.1007/s12010-012-9859-5
DO - 10.1007/s12010-012-9859-5
M3 - Article
SN - 0273-2289
VL - 168
SP - 1311
EP - 1318
JO - Applied Biochemistry and Biotechnology
JF - Applied Biochemistry and Biotechnology
IS - 5
ER -