Abstract
Fungi are prominent components of every ecosystem—in terms of biomass, diversity and functioning. However, in contrast to many other taxonomic groups, we have a poor mechanistic understanding of the patterns in fungal community organization and functioning. To address this gap, a growing number of researchers are beginning to characterize fungal diversity in terms of traits that explain how fungi respond to and influence the environment (Crowther et al., 2014; Aguilar-Trigueros et al., 2015).
In this paper, we argue that body size is a trait that, although historically ignored in mycology, could be a major axis for understanding the biology of fungi. Our argument is based on the fact that fungi vary considerably in size, ranging from single-celled microscopic organisms to one of the largest living organisms on earth (Smith et al., 1992). Thus the scaling of fungal traits to body size or its proxies is likely to capture a wealth of valuable baseline information about the ecology and functioning of those species.
In this paper, we argue that body size is a trait that, although historically ignored in mycology, could be a major axis for understanding the biology of fungi. Our argument is based on the fact that fungi vary considerably in size, ranging from single-celled microscopic organisms to one of the largest living organisms on earth (Smith et al., 1992). Thus the scaling of fungal traits to body size or its proxies is likely to capture a wealth of valuable baseline information about the ecology and functioning of those species.
Original language | English |
---|---|
Pages (from-to) | 2175-2180 |
Number of pages | 6 |
Journal | ISME Journal |
Volume | 11 |
Issue number | 10 |
DOIs | |
Publication status | Published - Oct 2017 |
Keywords
- international