Abstract
In sexually size-dimorphic bird species, rearing costs of sons and daughters usually differ and may be important in the evolution of offspring sex ratio adjustment. Raptors have reversed sexual size dimorphism and the smaller males are sometimes found to be overrepresented in food-poor territories or years. As a raptor with small reversed sexual dimorphism (6% in body mass), the European Honey Buzzard Pernis apivorus is expected to show little or no brood sex ratio bias in relation to environmental conditions. We molecularly sexed 311 chicks of 195 broods in and around The Netherlands, during 1996–2014. We examined which environmental factors explained brood sex ratio variation best. Overall, sex ratio was not biased (all nests pooled: 50.8% females) but more females were produced in years when on average Honey Buzzards bred earlier (32% sex ratio change over a ten-day range in annual mean laying date). Within-year laying date variation, hatching order, abundance of wasp (Vespinae) nests (main food source) and summer weather did not explain sex ratio variation. In the Veluwe and Drenthe (1974–2014), Honey Buzzards laid eggs earlier when the spring was warmer, which resulted in a c. 9-day advance in laying date over 40 years. As warm spring weather was also a predictor of a higher density of wasp colonies, we expected female chicks to benefit more from growing up in wasp-rich years than males, if the sex ratio biases were adaptive. However, this differential growth benefit was not noticeable in chick body mass; chick body mass was best explained by negative effects of relative laying date (within a year) and hatching order. The potential benefit for female nestlings (compared to males) of growing up in years with warm springs, when egg laying occurs early and wasp colonies are more abundant, remains unknown.
Original language | English |
---|---|
Journal | Ardea |
Volume | 110 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2022 |
Keywords
- adjustment
- body condition
- Environment
- food
- laying date
- long-lived
- migratory
- raptor
- social wasps
- temperature