Characterization of bacterial communities in four freshwater lakes differing in nutrient load and food web structure

K. van der Gucht, T. Vandekerckhove, N. Vloemans, S. Cousin, K. Muylaert, K. Sabbe, M. Gillis, Steven A.J. Declerck, Luc De Meester, W. Vyverman

Research output: Contribution to journal/periodicalArticleScientificpeer-review

159 Citations (Scopus)


The phylogenetic composition of bacterioplankton communities in the water column of four shallow eutrophic lakes was analyzed by partially sequencing cloned 16S rRNA genes and by PCR-DGGE analysis. The four lakes differed in nutrient load and food web structure: two were in a clearwater state and had dense stands of submerged macrophytes, while two others were in a turbid state characterized by the occurrence of phytoplankton blooms. One turbid and one clearwater lake had very high nutrient levels (total phosphorus > 100 mu g/l), while the other lakes were less nutrient rich (total phosphorus <100 mu g/l). Cluster analysis, multidimensional scaling and ANOSIM (analysis of similarity) were used to investigate differences among the bacterial community composition in the four lakes. Our results show that each lake has its own distinct bacterio plankton community. The samples of lake Blankaart differed substantially from those of the other lakes; this pattern was consistent throughout the year of study. The bacterioplankton community composition in lake Blankaart seems to be less diverse and less stable than in the other three lakes. Clone library results reveal that Actinobacteria strongly dominated the bacterial community in lake Blankaart. The relative abundance of Betaproteobacteria was low, whereas this group was dominant in the other three lakes. Turbid lakes had a higher representation of Cyanobacteria, while clearwater lakes were characterized by more representatives of the Bacteroidetes. Correlating our DGGE data with environmental parameters, using the BIOENV procedure, suggests that differences are partly related to the equilibrium state of the lake. (c) 2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.
Original languageEnglish
Pages (from-to)205-220
Number of pages16
JournalFEMS Microbiology Ecology
Issue number2
Publication statusPublished - 2005
Externally publishedYes


  • bacterial communities 16S ribosomal RNA clone library DGGE freshwater lakes rna gene-sequences ribosomal-rna shallow lakes phylogenetic analysis interconnected ponds population-dynamics pelagic bacteria 16s zooplankton diversity Microbiology


Dive into the research topics of 'Characterization of bacterial communities in four freshwater lakes differing in nutrient load and food web structure'. Together they form a unique fingerprint.

Cite this