Chronotopic maps in human supplementary motor area

Foteini Protopapa, Masamichi J Hayashi, Shrikanth Kulashekhar, Wietske van der Zwaag, Giovanni Battistella, Micah M Murray, Ryota Kanai, Domenica Bueti

Research output: Contribution to journal/periodicalArticleScientificpeer-review

146 Downloads (Pure)


Time is a fundamental dimension of everyday experiences. We can unmistakably sense its passage and adjust our behavior accordingly. Despite its ubiquity, the neuronal mechanisms underlying the capacity to perceive time remains unclear. Here, in two experiments using ultrahigh-field 7-Tesla (7T) functional magnetic resonance imaging (fMRI), we show that in the medial premotor cortex (supplementary motor area [SMA]) of the human brain, neural units tuned to different durations are orderly mapped in contiguous portions of the cortical surface so as to form chronomaps. The response of each portion in a chronomap is enhanced by neighboring durations and suppressed by nonpreferred durations represented in distant portions of the map. These findings suggest duration-sensitive tuning as a possible neural mechanism underlying the recognition of time and demonstrate, for the first time, that the representation of an abstract feature such as time can be instantiated by a topographical arrangement of duration-sensitive neural populations.

Original languageEnglish
Pages (from-to)e3000026
JournalPLoS Biology
Issue number3
Publication statusPublished - Mar 2019


Dive into the research topics of 'Chronotopic maps in human supplementary motor area'. Together they form a unique fingerprint.

Cite this