TY - JOUR
T1 - Comparative Genomics of the Sigatoka Disease Complex on Banana Suggests a Link between Parallel Evolutionary Changes in Pseudocercospora fijiensis and Pseudocercospora eumusae and Increased Virulence on the Banana Host
AU - Chang, Ti-Cheng
AU - Salvucci, Anthony
AU - Crous, Pedro W.
AU - Stergiopoulos, Ioannis
PY - 2016/8/11
Y1 - 2016/8/11
N2 - Understanding the evolutionary and genomic changes involved in the emergence of new pathogens and shifts in virulence spectra is vital for deciphering the biological process of disease emergence and for designing new and effective disease control methods. In this study, we employed comparative genomics in order to examine the nature, diversity, and extent of genomic modifications associated with changes in virulence among Pseudocercospora musae, Pseudocercospora eumusae, and Pseudocercospora fijiensis, the main constituents of the Sigatoka disease complex on banana, currently one of the most destructive diseases on banana worldwide. Our comparative genome analyses have highlighted the role of pathoadaptive changes in virulence associated genes, such as those encoding for effectors, in shaping the underlying differences in virulence spectra among the three species, and also revealed that changes in the size of gene families associated with nutrient acquisition and assimilation are more respectful of the species virulence profiles rather than their evolutionary relationships. Thus, we posit that next to species-specific evolutionary adaptations in virulence-associated genes, the increase in virulence of P. eumusae and P. fijiensis has been driven by convergent evolution in metabolic pathways that likely facilitate a higher efficiency of nutrient acquisition, uptake, and utilization.
AB - Understanding the evolutionary and genomic changes involved in the emergence of new pathogens and shifts in virulence spectra is vital for deciphering the biological process of disease emergence and for designing new and effective disease control methods. In this study, we employed comparative genomics in order to examine the nature, diversity, and extent of genomic modifications associated with changes in virulence among Pseudocercospora musae, Pseudocercospora eumusae, and Pseudocercospora fijiensis, the main constituents of the Sigatoka disease complex on banana, currently one of the most destructive diseases on banana worldwide. Our comparative genome analyses have highlighted the role of pathoadaptive changes in virulence associated genes, such as those encoding for effectors, in shaping the underlying differences in virulence spectra among the three species, and also revealed that changes in the size of gene families associated with nutrient acquisition and assimilation are more respectful of the species virulence profiles rather than their evolutionary relationships. Thus, we posit that next to species-specific evolutionary adaptations in virulence-associated genes, the increase in virulence of P. eumusae and P. fijiensis has been driven by convergent evolution in metabolic pathways that likely facilitate a higher efficiency of nutrient acquisition, uptake, and utilization.
U2 - 10.1371/journal.pgen.1005904
DO - 10.1371/journal.pgen.1005904
M3 - Article
SN - 1553-7404
VL - 12
SP - e1005904
JO - PLoS Genetics
JF - PLoS Genetics
IS - 8
ER -