ComplexRec 2020: Workshop on Recommendation in Complex Environments

Toine Bogers, Marijn Koolen, Casper Petersen, Bamshad Mobasher, Alexander Tuzhilin

Research output: Chapter in book/volumeChapterScientificpeer-review

Abstract

During the past decade, recommender systems have rapidly become an indispensable element of websites, apps, and other platforms that are looking to provide personalized interaction to their users. As recommendation technologies are applied to an ever-growing array of non-standard problems and scenarios, researchers and practitioners are also increasingly faced with challenges of dealing with greater variety and complexity in the inputs to those recommender systems. For example, there has been more reliance on fine-grained user signals as inputs rather than simple ratings or likes. Many applications also require more complex domain-specific constraints on inputs to the recommender systems. The outputs of recommender systems are also moving towards more complex composite items, such as package or sequence recommendations. This increasing complexity requires smarter recommender algorithms that can deal with this diversity in inputs and outputs. The ComplexRec workshop series offers an interactive venue for discussing approaches to recommendation in complex scenarios that have no simple one-size-fits-all solution.
Original languageEnglish
Title of host publicationRecSys 2020 - 14th ACM Conference on Recommender Systems
Pages609-610
Number of pages2
DOIs
Publication statusPublished - 22 Sep 2020

Publication series

NameRecSys 2020 - 14th ACM Conference on Recommender Systems

Keywords

  • Complex recommendation

Fingerprint

Dive into the research topics of 'ComplexRec 2020: Workshop on Recommendation in Complex Environments'. Together they form a unique fingerprint.

Cite this