TY - JOUR
T1 - Defences in phytoplankton against grazing induced by nutrient limitation, UV-B stress and infochemicals
AU - Van Donk, E.
N1 - Reporting year: 1997
Metis note: 2310; CL; AFW ; AqE; file:///L:/Endnotedatabases/NIOOPUB/pdfs/Pdfs1997/VanDonk_2310.pdf
PY - 1997
Y1 - 1997
N2 - It is becoming increasingly evident that the efficiency of zooplankton grazing on algae is not only a matter of quantity of the grazer relative to its food. Planktonic primary producers are not defenseless food-particles that are easily harvested by the consumers. Several algal species are able to adjust their phenotype (colony formation, spines, size) in such a way that it results in a reduced grazing pressure. It was recently demonstrated that morphological changes in the cell wall of green algae, induced by nutrient limitation and UV-B stress, may reduce their digestibility. A high fraction of induced cells pass intact and viable through the gut of the zooplankters, such that the grazing impact on the population is strongly reduced. It was also found that the presence of exudates (infochemicals) released by daphnids may change the morphology of algae. Unicellular green algae of the genus Scenedesmus were induced to form eight-cell coenobial types, heavily armed with spines, within three to five days after adding filtered water from an algal culture with Daphnia present. Both defence mechanisms may play an important role in zooplankton production and competition, and may serve as an example of highly efficient strategies to resist heavy grazing pressure. [KEYWORDS: algal cell wall, colony formation, Daphnia, digestibility, grazing resistance, induced defence]
AB - It is becoming increasingly evident that the efficiency of zooplankton grazing on algae is not only a matter of quantity of the grazer relative to its food. Planktonic primary producers are not defenseless food-particles that are easily harvested by the consumers. Several algal species are able to adjust their phenotype (colony formation, spines, size) in such a way that it results in a reduced grazing pressure. It was recently demonstrated that morphological changes in the cell wall of green algae, induced by nutrient limitation and UV-B stress, may reduce their digestibility. A high fraction of induced cells pass intact and viable through the gut of the zooplankters, such that the grazing impact on the population is strongly reduced. It was also found that the presence of exudates (infochemicals) released by daphnids may change the morphology of algae. Unicellular green algae of the genus Scenedesmus were induced to form eight-cell coenobial types, heavily armed with spines, within three to five days after adding filtered water from an algal culture with Daphnia present. Both defence mechanisms may play an important role in zooplankton production and competition, and may serve as an example of highly efficient strategies to resist heavy grazing pressure. [KEYWORDS: algal cell wall, colony formation, Daphnia, digestibility, grazing resistance, induced defence]
U2 - 10.1023/A:1009951622185
DO - 10.1023/A:1009951622185
M3 - Article
SN - 1386-2588
VL - 31
SP - 53
EP - 58
JO - Aquatic Ecology
JF - Aquatic Ecology
ER -