Directed expression of the growth-associated protein B-50/GAP-43 to olfactory neurons in transgenic mice results in changes in axon morphology and extraglomerular fiber growth

Anthony J D G Holtmaat, Paul A Dijkhuizen, A B Oestreicher, H.J. Romijn, N M Van der Lugt, A Berns, F L Margolis, Willem Hendrik Gispen, J Verhaagen

Research output: Contribution to journal/periodicalArticleScientificpeer-review

Abstract

B-50/GAP-43, a neural growth-associated phosphoprotein, is thought to play a role in neuronal plasticity and nerve fiber formation since it is expressed at high levels in developing and regenerating neurons and in growth cones. Using a construct containing the coding sequence of B-50/GAP-43 under the control of regulatory elements of the olfactory marker protein (OMP) gene, transgenic mice were generated to study the effect of directed expression of B-50/GAP-43 in a class of neurons that does not normally express B-50/GAP-43, namely, mature OMP-positive olfactory neurons. Olfactory neurons have a limited lifespan and are replaced throughout adulthood by new neurons that migrate into the upper compartment of the epithelium following their formation from stem cells in the basal portion of this neuroepithelium. Thus, the primary olfactory pathway is exquisitely suited to examine a role of B-50/GAP-43 in neuronal migration, lifespan, and nerve fiber growth. We find that B-50/GAP-43 expression in adult olfactory neurons results in numerous primary olfactory axons with enlarged endings preferentially located at the rim of individual glomeruli. Furthermore, ectopic olfactory nerve fibers in between the juxtaglomerular neurons or in close approximation to blood vessels were frequently observed. This suggests that expression of B-50/GAP-43 in mature olfactory neurons alters their response to signals in the bulb. Other parameters examined, that is, migration and lifespan of olfactory neurons are normal in B-50/GAP-43 transgenic mice. These observations provide direct in vivo evidence for a role of B-50/GAP-43 in nerve fiber formation and in the determination of the morphology of axons.

Original languageEnglish
Pages (from-to)7953-65
Number of pages13
JournalThe Journal of neuroscience : the official journal of the Society for Neuroscience
Volume15
Issue number12
Publication statusPublished - Dec 1995

Keywords

  • Animals
  • Axons
  • GAP-43 Protein
  • Juxtaglomerular Apparatus
  • Membrane Glycoproteins
  • Mice
  • Mice, Transgenic
  • Nerve Fibers
  • Nerve Tissue Proteins
  • Neurons
  • Olfactory Bulb
  • Olfactory Marker Protein
  • Olfactory Pathways
  • Synaptic Transmission
  • Journal Article
  • Research Support, Non-U.S. Gov't

Fingerprint

Dive into the research topics of 'Directed expression of the growth-associated protein B-50/GAP-43 to olfactory neurons in transgenic mice results in changes in axon morphology and extraglomerular fiber growth'. Together they form a unique fingerprint.

Cite this