TY - JOUR
T1 - Effects of nitrate availability and the presence of Glyceria maxima the composition and activity of the dissimilatory nitrate-reducing bacterial community
AU - Nijburg, J.W.
AU - Coolen, M.
AU - Gerards, S.
AU - Klein Gunnewiek, P.J.A.
AU - Laanbroek, H.J.
N1 - Reporting year: 1997
Metis note: 2200; CTE ; CL; PVP ; MWE ; ME file:///L:/Endnotedatabases/NIOOPUB/pdfs/Pdfs1997/Nijburg_ea_2200.pdf
PY - 1997
Y1 - 1997
N2 - The effects of nitrate availability and the presence of Glyceria maxima on the composition and activity of the dissimilatory nitrate-reducing bacterial community were studied in the laboratory. Four different concentrations of NO3-, 0, 533, 1434, and 2,905 mu g of NO3--N g of dry sediment(-1), were added to pots containing freshwater sediment, and the pots were then incubated for a period of 69 days. Upon harvest, NH4+ was not detectable in sediment that received 0 or 533 mu g of NO3-- N g of dry sediment(-1). Nitrate concentrations in these pots ranged from 0 to 8 mu g of NO3--N g of dry sediment(-1) at harvest. In pots that received 1,434 or 2,905 mu g of NO3--N g of dry sediment(-1), final concentrations varied between 10 and 48 mu g of NH4+-N g of dry sediment(-1) and between 200 and 1,600 mu g of NO3--N g of dry sediment(-1), respectively. Higher input levels of NO3- resulted in increased numbers of potential nitrate-reducing bacteria and higher potential nitrate-reducing activity in the rhizosphere. In sediment samples from the rhizosphere, the contribution of denitrification to the potential nitrate-reducing capacity varied from 8% under NO3--limiting conditions to 58% when NO3- was in ample supply. In bulk sediment with excess NO3-, this percentage was 44%. The nitrate-reducing community consisted almost entirely of NO2--accumulating or NH4+-producing gram- positive species when NO3- was not added to the sediment. The addition of NO3- resulted in an increase of denitrifying Pseudomonas and Moraxella strains. The factor controlling the composition of the nitrate-reducing community when NO3- is limited is the presence of G. maxima. In sediment with excess NO3-, nitrate availability determines the composition of the nitrate-reducing community. [KEYWORDS: Denitrifying bacteria; denitrification; soil; sediments; populations; rhizosphere; reduction; acetylene; plants; roots]
AB - The effects of nitrate availability and the presence of Glyceria maxima on the composition and activity of the dissimilatory nitrate-reducing bacterial community were studied in the laboratory. Four different concentrations of NO3-, 0, 533, 1434, and 2,905 mu g of NO3--N g of dry sediment(-1), were added to pots containing freshwater sediment, and the pots were then incubated for a period of 69 days. Upon harvest, NH4+ was not detectable in sediment that received 0 or 533 mu g of NO3-- N g of dry sediment(-1). Nitrate concentrations in these pots ranged from 0 to 8 mu g of NO3--N g of dry sediment(-1) at harvest. In pots that received 1,434 or 2,905 mu g of NO3--N g of dry sediment(-1), final concentrations varied between 10 and 48 mu g of NH4+-N g of dry sediment(-1) and between 200 and 1,600 mu g of NO3--N g of dry sediment(-1), respectively. Higher input levels of NO3- resulted in increased numbers of potential nitrate-reducing bacteria and higher potential nitrate-reducing activity in the rhizosphere. In sediment samples from the rhizosphere, the contribution of denitrification to the potential nitrate-reducing capacity varied from 8% under NO3--limiting conditions to 58% when NO3- was in ample supply. In bulk sediment with excess NO3-, this percentage was 44%. The nitrate-reducing community consisted almost entirely of NO2--accumulating or NH4+-producing gram- positive species when NO3- was not added to the sediment. The addition of NO3- resulted in an increase of denitrifying Pseudomonas and Moraxella strains. The factor controlling the composition of the nitrate-reducing community when NO3- is limited is the presence of G. maxima. In sediment with excess NO3-, nitrate availability determines the composition of the nitrate-reducing community. [KEYWORDS: Denitrifying bacteria; denitrification; soil; sediments; populations; rhizosphere; reduction; acetylene; plants; roots]
KW - NIOO/CTE/PVP
M3 - Article
SN - 0099-2240
VL - 63
SP - 931
EP - 937
JO - Applied and Environmental Microbiology
JF - Applied and Environmental Microbiology
IS - 3
ER -