TY - UNPB
T1 - Empirical estimates of the mutation rate for an alphabaculovirus
AU - Boezen, D.
AU - Ali, Ghulam
AU - Wang, Manli
AU - van der Werf, Wopke
AU - Vlak, Just M.
AU - Zwart, Mark
PY - 2021/9/8
Y1 - 2021/9/8
N2 - Mutation rates are of key importance for understanding evolutionary processes and predicting their outcomes. Empirical estimates of mutation rate are available for a number of RNA viruses, but few are available for DNA viruses, which tend to have larger genomes. Whilst some viruses have very high mutation rates, lower mutation rates are expected for viruses with large genomes to ensure genome integrity. Alphabaculoviruses are insect viruses with large genomes and often have high levels of polymorphism, suggesting high mutation rates despite evidence of proofreading activity by the replication machinery. Here, we report an empirical estimate of the mutation rate per base per strand copying (s/n/r) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV). To avoid biases due to selection, we analyzed mutations that occurred in a stable, non-functional genomic insert after five serial passages in Spodoptera exigua larvae. Population bottlenecks, viral mode of replication and thresholds for mutation detection likely affect mutation rate estimates, and we therefore used population genetic models that account for these processes to infer the mutation rate. We estimated a mutation rate of 1×10−7 s/n/r. This estimate was not sensitive to different model assumptions or including whole genome data. The rates at which different classes of mutations accumulate provide good evidence for neutrality of mutations occurring within the inserted region. We therefore present a robust approach for mutation rate estimation for viruses with stable genomes, and strong evidence of a much lower alphabaculovirus mutation rate than supposed based on the high levels of polymorphism observed.
AB - Mutation rates are of key importance for understanding evolutionary processes and predicting their outcomes. Empirical estimates of mutation rate are available for a number of RNA viruses, but few are available for DNA viruses, which tend to have larger genomes. Whilst some viruses have very high mutation rates, lower mutation rates are expected for viruses with large genomes to ensure genome integrity. Alphabaculoviruses are insect viruses with large genomes and often have high levels of polymorphism, suggesting high mutation rates despite evidence of proofreading activity by the replication machinery. Here, we report an empirical estimate of the mutation rate per base per strand copying (s/n/r) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV). To avoid biases due to selection, we analyzed mutations that occurred in a stable, non-functional genomic insert after five serial passages in Spodoptera exigua larvae. Population bottlenecks, viral mode of replication and thresholds for mutation detection likely affect mutation rate estimates, and we therefore used population genetic models that account for these processes to infer the mutation rate. We estimated a mutation rate of 1×10−7 s/n/r. This estimate was not sensitive to different model assumptions or including whole genome data. The rates at which different classes of mutations accumulate provide good evidence for neutrality of mutations occurring within the inserted region. We therefore present a robust approach for mutation rate estimation for viruses with stable genomes, and strong evidence of a much lower alphabaculovirus mutation rate than supposed based on the high levels of polymorphism observed.
U2 - 10.1101/2021.09.07.459225
DO - 10.1101/2021.09.07.459225
M3 - Preprint
T3 - bioRxiv
BT - Empirical estimates of the mutation rate for an alphabaculovirus
PB - bioRxiv
ER -