Environmental factors and traits that drive plant litter decomposition do not determine home-field advantage effects

G.F. Veen, Maja K. Sundqvist, David A. Wardle

Research output: Contribution to journal/periodicalArticleScientificpeer-review

64 Citations (Scopus)
8 Downloads (Pure)


The ‘home-field advantage’ (HFA) hypothesis predicts that plant litter is decomposed faster than expected underneath the plant from which it originates (‘home’) than underneath other plants (‘away’), because decomposer communities are specialized to break down litter from the plants they associate with. However, empirical evidence shows that the occurrence of HFA is highly variable, and the reasons for this are little understood. In our study we progress our understanding by investigating whether HFA is stronger for more recalcitrant litter types and under colder conditions and how soil properties and plant functional traits affect the magnitude and direction of HFA. In subarctic tundra in northern Sweden we set up a reciprocal transplant litter decomposition experiment along an elevational gradient where three highly contrasting vegetation types (heath, meadow and Salix) occur at all elevations, and where temperature decreases strongly with elevation. In this study, we used a litter bag approach where litters from each elevation × vegetation type combination were decomposed in all combinations of elevation × vegetation type. We also measured community-level plant functional traits, such as leaf and litter nutrient content. We determined soil biotic and abiotic properties, such as microbial biomass and soil nutrient content, in soil cores collected for each elevation × vegetation type combination. We found that mass loss increased with plant and litter nutrient content and with soil temperature. In contrast, the occurrence of HFA was limited in our study system, and its magnitude and direction could not be explained by vegetation type, elevation, plant traits or soil properties, despite these factors serving as powerful drivers of litter mass loss in our study. We conclude that although vegetation type and climate are major drivers of litter mass loss, they do not emerge as important determinants of HFA. Therefore, while rapid shifts in plant community composition or temperature due to global change are likely to influence litter mass loss directly by altering environmental conditions, plant trait spectra and litter quality, indirect effects of global change resulting from decoupling of specialist interactions between litter and decomposer communities appears to be of less importance. This article is protected by copyright. All rights reserved.
Original languageEnglish
Pages (from-to)981-991
JournalFunctional Ecology
Issue number7
Early online date09 Feb 2015
Publication statusPublished - 2015


  • nutrient cycling
  • litter-decomposer interactions
  • specialization
  • global change
  • substrate quality
  • incubation conditions
  • international


Dive into the research topics of 'Environmental factors and traits that drive plant litter decomposition do not determine home-field advantage effects'. Together they form a unique fingerprint.

Cite this