Standard

Epigenetic population differentiation in field- and common garden-grown Scabiosa columbaria plants. / Groot, Maartje P; Wagemaker, Niels CAM; Ouborg, N Joop; Verhoeven, Koen J F; Vergeer, Philippine.

In: Ecology and Evolution, Vol. 8, No. 6, 03.2018, p. 3505-3517.

Research output: Contribution to journal/periodicalArticleScientificpeer-review

Harvard

APA

Vancouver

Author

Groot, Maartje P ; Wagemaker, Niels CAM ; Ouborg, N Joop ; Verhoeven, Koen J F ; Vergeer, Philippine. / Epigenetic population differentiation in field- and common garden-grown Scabiosa columbaria plants. In: Ecology and Evolution. 2018 ; Vol. 8, No. 6. pp. 3505-3517.

BibTeX

@article{8dff540bb6a64b9599b07e4831f28e21,
title = "Epigenetic population differentiation in field- and common garden-grown Scabiosa columbaria plants",
abstract = "Populations often differ in phenotype and these differences can be caused by adaptation by natural selection, random neutral processes, and environmental responses. The most straightforward way to divide mechanisms that influence phenotypic variation is heritable variation and environmental-induced variation (e.g., plasticity). While genetic variation is responsible for most heritable phenotypic variation, part of this is also caused by nongenetic inheritance. Epigenetic processes may be one of the underlying mechanisms of plasticity and nongenetic inheritance and can therefore possibly contribute to heritable differences through drift and selection. Epigenetic variation may be influenced directly by the environment, and part of this variation can be transmitted to next generations. Field screenings combined with common garden experiments will add valuable insights into epigenetic differentiation, epigenetic memory and can help to reveal part of the relative importance of epigenetics in explaining trait variation. We explored both genetic and epigenetic diversity, structure and differentiation in the field and a common garden for five British and five French Scabiosa columbaria populations. Genetic and epigenetic variation was subsequently correlated with trait variation. Populations showed significant epigenetic differentiation between populations and countries in the field, but also when grown in a common garden. By comparing the epigenetic variation between field and common garden-grown plants, we showed that a considerable part of the epigenetic memory differed from the field-grown plants and was presumably environmentally induced. The memory component can consist of heritable variation in methylation that is not sensitive to environments and possibly genetically based, or environmentally induced variation that is heritable, or a combination of both. Additionally, random epimutations might be responsible for some differences as well. By comparing epigenetic variation in both the field and common environment, our study provides useful insight into the environmental and genetic components of epigenetic variation.",
keywords = "national",
author = "Groot, {Maartje P} and Wagemaker, {Niels CAM} and Ouborg, {N Joop} and Verhoeven, {Koen J F} and Philippine Vergeer",
note = "6515, TE; Data archiving: data property of and archived at RU Nijmegen",
year = "2018",
month = "3",
doi = "10.1002/ece3.3931",
language = "English",
volume = "8",
pages = "3505--3517",
journal = "Ecology and Evolution",
issn = "2045-7758",
publisher = "John Wiley and Sons Ltd",
number = "6",

}

RIS

TY - JOUR

T1 - Epigenetic population differentiation in field- and common garden-grown Scabiosa columbaria plants

AU - Groot, Maartje P

AU - Wagemaker, Niels CAM

AU - Ouborg, N Joop

AU - Verhoeven, Koen J F

AU - Vergeer, Philippine

N1 - 6515, TE; Data archiving: data property of and archived at RU Nijmegen

PY - 2018/3

Y1 - 2018/3

N2 - Populations often differ in phenotype and these differences can be caused by adaptation by natural selection, random neutral processes, and environmental responses. The most straightforward way to divide mechanisms that influence phenotypic variation is heritable variation and environmental-induced variation (e.g., plasticity). While genetic variation is responsible for most heritable phenotypic variation, part of this is also caused by nongenetic inheritance. Epigenetic processes may be one of the underlying mechanisms of plasticity and nongenetic inheritance and can therefore possibly contribute to heritable differences through drift and selection. Epigenetic variation may be influenced directly by the environment, and part of this variation can be transmitted to next generations. Field screenings combined with common garden experiments will add valuable insights into epigenetic differentiation, epigenetic memory and can help to reveal part of the relative importance of epigenetics in explaining trait variation. We explored both genetic and epigenetic diversity, structure and differentiation in the field and a common garden for five British and five French Scabiosa columbaria populations. Genetic and epigenetic variation was subsequently correlated with trait variation. Populations showed significant epigenetic differentiation between populations and countries in the field, but also when grown in a common garden. By comparing the epigenetic variation between field and common garden-grown plants, we showed that a considerable part of the epigenetic memory differed from the field-grown plants and was presumably environmentally induced. The memory component can consist of heritable variation in methylation that is not sensitive to environments and possibly genetically based, or environmentally induced variation that is heritable, or a combination of both. Additionally, random epimutations might be responsible for some differences as well. By comparing epigenetic variation in both the field and common environment, our study provides useful insight into the environmental and genetic components of epigenetic variation.

AB - Populations often differ in phenotype and these differences can be caused by adaptation by natural selection, random neutral processes, and environmental responses. The most straightforward way to divide mechanisms that influence phenotypic variation is heritable variation and environmental-induced variation (e.g., plasticity). While genetic variation is responsible for most heritable phenotypic variation, part of this is also caused by nongenetic inheritance. Epigenetic processes may be one of the underlying mechanisms of plasticity and nongenetic inheritance and can therefore possibly contribute to heritable differences through drift and selection. Epigenetic variation may be influenced directly by the environment, and part of this variation can be transmitted to next generations. Field screenings combined with common garden experiments will add valuable insights into epigenetic differentiation, epigenetic memory and can help to reveal part of the relative importance of epigenetics in explaining trait variation. We explored both genetic and epigenetic diversity, structure and differentiation in the field and a common garden for five British and five French Scabiosa columbaria populations. Genetic and epigenetic variation was subsequently correlated with trait variation. Populations showed significant epigenetic differentiation between populations and countries in the field, but also when grown in a common garden. By comparing the epigenetic variation between field and common garden-grown plants, we showed that a considerable part of the epigenetic memory differed from the field-grown plants and was presumably environmentally induced. The memory component can consist of heritable variation in methylation that is not sensitive to environments and possibly genetically based, or environmentally induced variation that is heritable, or a combination of both. Additionally, random epimutations might be responsible for some differences as well. By comparing epigenetic variation in both the field and common environment, our study provides useful insight into the environmental and genetic components of epigenetic variation.

KW - national

U2 - 10.1002/ece3.3931

DO - 10.1002/ece3.3931

M3 - Article

VL - 8

SP - 3505

EP - 3517

JO - Ecology and Evolution

JF - Ecology and Evolution

SN - 2045-7758

IS - 6

ER -

ID: 6492133