Genetic fine-mapping of DIPLOSPOROUS in Taraxacum (dandelion; Asteraceae) indicates a duplicated DIP-gene

Research output: Contribution to journal/periodicalArticleScientificpeer-review

33 Citations (Scopus)
231 Downloads (Pure)


Background DIPLOSPOROUS (DIP) is the locus for diplospory in Taraxacum, associated to unreduced female gamete formation in apomicts. Apomicts reproduce clonally through seeds, including apomeiosis, parthenogenesis, and autonomous or pseudogamous endosperm formation. In Taraxacum, diplospory results in first division restitution (FDR) nuclei, and inherits as a dominant, monogenic trait, independent from the other apomixis elements. A preliminary genetic linkage map indicated that the DIP-locus lacks suppression of recombination, which is unique among all other map-based cloning efforts of apomeiosis to date. FDR as well as apomixis as a whole are of interest in plant breeding, allowing for polyploidization and fixation of hybrid vigor, respectively. No dominant FDR or apomixis genes have yet been isolated. Here, we zoom-in to the DIP-locus by largely extending our initial mapping population, and by analyzing (local) suppression of recombination and allele sequence divergence (ASD). Results We identified 24 recombinants between two most closely linked molecular markers to DIP in an F1-population of 2227 plants that segregates for diplospory and lacks parthenogenesis. Both markers segregated c. 1:1 in the entire population, indicating a 1:1 segregation rate of diplospory. Fine-mapping showed three amplified fragment length polymorphisms (AFLPs) closest to DIP at 0.2 cM at one flank and a single AFLP at 0.4 cM at the other flank. Our data lacked strong evidence for ASD at marker regions close to DIP. An unexpected bias towards diplosporous plants among the recombinants (20 out of 24) was found. One third of these diplosporous recombinants showed incomplete penetrance of 50-85% diplospory. Conclusions Our data give interesting new insights into the structure of the diplospory locus in Taraxacum. We postulate a locus with a minimum of two DIP-genes and possibly including one or two enhancers or cis-regulatory elements on the basis of the bias towards diplosporous recombinants and incomplete penetrance of diplospory in some of them. We define the DIP-locus to 0.6 cM, which is estimated to cover ~200-300 Kb, with the closest marker at 0.2 cM. Our results confirm the minor role of suppression of recombination and ASD around DIP, making it an excellent candidate to isolate via a chromosome-walking approach.
Original languageEnglish
Pages (from-to)154
JournalBMC Plant Biology
Publication statusPublished - 2010


Dive into the research topics of 'Genetic fine-mapping of DIPLOSPOROUS in Taraxacum (dandelion; Asteraceae) indicates a duplicated DIP-gene'. Together they form a unique fingerprint.

Cite this