Genetically related micafungin-resistant Candida parapsilosis blood isolates harbouring novel mutation R658G in hotspot 1 of Fks1p: a new challenge?

Amir Arastehfar, Farnaz Daneshnia, Süleyha Hilmioglu-Polat, Macit Ilkit, Melike Yasar, Furkan Polat, Dilek Yeşim Metin, Ülküm Zafer Dokumcu, Weihua Pan, Ferry Hagen, Teun Boekhout, David S Perlin, Cornelia Lass-Flörl

Research output: Contribution to journal/periodicalArticleScientificpeer-review

34 Citations (Scopus)

Abstract

BACKGROUND: Echinocandin resistance rarely occurs in clinical Candida parapsilosis isolates and the underlying mechanism is unknown.

OBJECTIVES: To determine the prevalence of echinocandin resistance and the underlying mechanism for a large collection of C. parapsilosis blood isolates and to determine whether the echinocandin-resistant isolates were clonally related.

METHODS: C. parapsilosis blood isolates (n = 213) were subjected to antifungal susceptibility testing (CLSI M27), for micafungin, anidulafungin, amphotericin B and, if appropriate, caspofungin. Hotspot (HS) 1 and HS2 of FKS1 were sequenced for all isolates (n = 213) and microsatellite typing was performed for echinocandin-resistant isolates.

RESULTS: All isolates were susceptible to amphotericin B and two isolates were intermediate to anidulafungin (MIC = 4 mg/L), while micafungin resistance was noted in four isolates (MIC >8 mg/L); three of which were also fluconazole resistant and therefore were MDR. Interestingly, micafungin-resistant isolates, but not those intermediate to anidulafungin, carried novel mutation R658G in HS1 of Fks1p; three of which also harboured Y132F+K143R in Erg11. The first isolate (MICR1) was recovered in November 2017 from a patient admitted to paediatric gastroenterology who showed therapeutic failure under caspofungin treatment. MICR2-MICR4 were collected during 2018-19 and were recovered from three echinocandin-naive paediatric-surgery patients; the isolates shared the same genotype.

CONCLUSIONS: Herein, for the first time (to the best of our knowledge), we identified micafungin-resistant C. parapsilosis blood isolates harbouring a novel mutation in HS1 of FKS1, which was likely attributable to in vitro micafungin resistance and in vivo caspofungin therapeutic failure. The acquisition of micafungin-resistant C. parapsilosis isolates in echinocandin-naive patients likely implicates clonal expansion, as supported by the close genetic relatedness of MICR2-MICR4.

Original languageEnglish
JournalJournal of Antimicrobial Chemotherapy
DOIs
Publication statusE-pub ahead of print - 11 Nov 2020

Fingerprint

Dive into the research topics of 'Genetically related micafungin-resistant Candida parapsilosis blood isolates harbouring novel mutation R658G in hotspot 1 of Fks1p: a new challenge?'. Together they form a unique fingerprint.

Cite this