HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting the beta-catenin-TCF interaction

F. Ye, Y. Chen, T. Hoang, R.L. Montgomery, X.H. Zhao, H. Bu, T. Hu, M.M. Taketo, J.H. van Es, H. Clevers, J. Hsieh, R. Bassel-Duby, E.N. Olson, Q.R. Lu

Research output: Contribution to journal/periodicalArticleScientificpeer-review

485 Citations (Scopus)


Oligodendrocyte development is regulated by the interaction of repressors and activators in a complex transcriptional network. We found that two histone-modifying enzymes, HDAC1 and HDAC2, were required for oligodendrocyte formation. Genetic deletion of both Hdac1 and Hdac2 in oligodendrocyte lineage cells resulted in stabilization and nuclear translocation of beta-catenin, which negatively regulates oligodendrocyte development by repressing Olig2 expression. We further identified the oligodendrocyte-restricted transcription factor TCF7L2/TCF4 as a bipartite co-effector of beta-catenin for regulating oligodendrocyte differentiation. Targeted disruption of Tcf7l2 in mice led to severe defects in oligodendrocyte maturation, whereas expression of its dominant-repressive form promoted precocious oligodendrocyte specification in developing chick neural tube. Transcriptional co-repressors HDAC1 and HDAC2 compete with beta-catenin for TCF7L2 interaction to regulate downstream genes involved in oligodendrocyte differentiation. Thus, crosstalk between HDAC1/2 and the canonical Wnt signaling pathway mediated by TCF7L2 serves as a regulatory mechanism for oligodendrocyte differentiation.
Original languageEnglish
Pages (from-to)829-838
JournalNature Neuroscience
Issue number7
Publication statusPublished - 2009


Dive into the research topics of 'HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting the beta-catenin-TCF interaction'. Together they form a unique fingerprint.

Cite this