Hematopoietic stem cells can differentiate into restricted myeloid progenitors before cell division in mice

Tatyana Grinenko, Anne Eugster, Lars Thielecke, Beáta Ramasz, Anja Krüger, Sevina Dietz, Ingmar Glauche, Alexander Gerbaulet, Malte von Bonin, Onur Basak, Hans Clevers, Triantafyllos Chavakis, Ben Wielockx

Research output: Contribution to journal/periodicalArticleScientificpeer-review

Abstract

Hematopoietic stem cells (HSCs) continuously replenish all blood cell types through a series of differentiation steps and repeated cell divisions that involve the generation of lineage-committed progenitors. However, whether cell division in HSCs precedes differentiation is unclear. To this end, we used an HSC cell-tracing approach and Ki67RFP knock-in mice, in a non-conditioned transplantation model, to assess divisional history, cell cycle progression, and differentiation of adult HSCs. Our results reveal that HSCs are able to differentiate into restricted progenitors, especially common myeloid, megakaryocyte-erythroid and pre-megakaryocyte progenitors, without undergoing cell division and even before entering the S phase of the cell cycle. Additionally, the phenotype of the undivided but differentiated progenitors correlated with the expression of lineage-specific genes and loss of multipotency. Thus HSC fate decisions can be uncoupled from physical cell division. These results facilitate a better understanding of the mechanisms that control fate decisions in hematopoietic cells.

Original languageEnglish
Pages (from-to)1898
JournalNature Communications
Volume9
Issue number1
DOIs
Publication statusPublished - 15 May 2018

Fingerprint

Dive into the research topics of 'Hematopoietic stem cells can differentiate into restricted myeloid progenitors before cell division in mice'. Together they form a unique fingerprint.

Cite this