How host larval age, and nutrition and density of the parasitoid Dinarmus basalis (Hymenoptera: Pteromalidae) influence control of Acanthoscelides obtectus (Coleoptera: Bruchidae)

I. Schmale, F.L. Wäckers, C. Cardona, S. Dorn

    Research output: Contribution to journal/periodicalArticleScientificpeer-review

    268 Downloads (Pure)

    Abstract

    Choice of the targeted host developmental stage, regulation of parasitoid numbers released and introduction of food supplements are operational factors with a potential to influence the level of biological control. In a closed laboratory storage system maintained over two generations of the host, the impact of these three parameters on the control potential of the parasitoid Dinarmus basalis Rondani was investigated for high populations of larvae of Acanthoscelides obtectus (Say) feeding inside dry common bean seeds Phaseolus vulgaris. The beans were already infested with immature bruchids at the beginning of the storage period to simulate harvest conditions, characterized in a previous study. Treatments resulted in a reduction of 48–75% of the bruchid population within 16 weeks of storage. The best timing of parasitoid release was at the simulated harvest, as later releases reduced the bruchid population only by about half this percentage. Host feeding is postulated to be the key factor involved in the observed difference. The effect of increasing the number of parasitoids strongly depended on host age and food supplement. Addition of vials with honey had no direct effect on the bruchid population or on the parasitoid progeny. The ecological significance of these findings and implications for biological control are discussed.
    Original languageEnglish
    Pages (from-to)145-150
    JournalBulletin of Entomological Research
    Volume95
    Issue number2
    DOIs
    Publication statusPublished - 2005

    Fingerprint

    Dive into the research topics of 'How host larval age, and nutrition and density of the parasitoid Dinarmus basalis (Hymenoptera: Pteromalidae) influence control of Acanthoscelides obtectus (Coleoptera: Bruchidae)'. Together they form a unique fingerprint.

    Cite this