Abstract
AIMS: Recent clinical studies revealed that positive results of cell transplantation on cardiac function are limited to the short- and mid-term restoration phase following myocardial infarction (MI), emphasizing the need for long-term follow-up. These transient effects may depend on the transplanted cell-type or its differentiation state. We have identified a population of cardiomyocyte progenitor cells (CMPCs) capable of differentiating efficiently into beating cardiomyocytes, endothelial cells, and smooth muscle cells in vitro. We investigated whether CMPCs or pre-differentiated CMPC-derived cardiomyocytes (CMPC-CM) are able to restore the injured myocardium after MI in mice. METHODS AND RESULTS: MI was induced in immunodeficient mice and was followed by intra-myocardial injection of CMPCs, CMPC-CM, or vehicle. Cardiac function was measured longitudinally up to 3 months post-MI using 9.4 Tesla magnetic resonance imaging. The fate of the human cells was determined by immunohistochemistry. Transplantation of CMPCs or CMPC-CM resulted in a higher ejection fraction and reduced the extent of left ventricular remodelling up to 3 months after MI when compared with vehicle-injected animals. CMPCs and CMPC-CM generated new cardiac tissue consisting of human cardiomyocytes and blood vessels. Fusion of human nuclei with murine nuclei was not observed. CONCLUSION: CMPCs differentiated into the same cell types in situ as can be obtained in vitro. This excludes the need for in vitro pre-differentiation, making CMPCs a promising source for (autologous) cell-based therapy.
Original language | English |
---|---|
Pages (from-to) | 527-535 |
Journal | Cardiovascular Research |
Volume | 83 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2009 |