• PDF

    Final published version, 308 KB, PDF-document

    Request copy


  • P.J. Van den Brink
  • J. Hattink
  • F. Bransen
  • E. Van Donk
  • Th.C.M. Brock
Effects of chronic application of the fungicide Derosal(R) (active ingredient carbendazim) were studied in indoor macrophyte-dominated freshwater microcosms. The concentrations (0, 3.3, 33, 100, 330 and 1000 mu g/l) were kept at a constant level for 4 weeks. This paper is the second of a series of two; it describes the effects on zooplankton and primary producers and presents an overall discussion. The zooplankton community was negatively affected by the three highest treatment levels (NOECcommunity = 33 mu g/l). At higher treatment levels Cladocera taxa were completely eliminated, while Copepod numbers were reduced. Rotatoria taxa decreased (Keratella quadrata and Lecane sp.) or increased in abundance (Testudinella parva) at the highest treatment level only. Due to the reduced grazing pressure, the abundance of some phytoplankton taxa and the chlorophyll-a content of the phytoplankton increased at the three highest treatment levels (NOECcommunity = 33 mu g/l). This effect was not observed for the periphyton, most probably because the reduced grazing pressure was compensated by the increased abundance of some snail species such as Lymnaea stagnalis and Physella acuta. At the end of the experimental period the biomass of the macrophyte Elodea nuttallii was significantly elevated at the two highest treatment levels. It is hypothesised that carbendazim might have caused, directly or indirectly, the removal of pathogene organisms from the macrophyte. [KEYWORDS: carbendazim; aquatic microcosm; pesticides; ecosystem effects; ecological effect chain]
Original languageEnglish
Pages (from-to)251-264
JournalAquatic Toxicology
Issue number2-3
Publication statusPublished - 2000

ID: 293269