TY - JOUR
T1 - Individual Differences in the Post-Illumination Pupil Response to Blue Light
T2 - Assessment without Mydriatics
AU - Bruijel, Jessica
AU - van der Meijden, Wisse P
AU - Bijlenga, Denise
AU - Dorani, Farangis
AU - Coppens, Joris E
AU - Te Lindert, Bart H W
AU - Kooij, J J Sandra
AU - Van Someren, Eus J W
PY - 2016/9
Y1 - 2016/9
N2 - Melanopsin-containing retinal ganglion cells play an important role in the non-image forming effects of light, through their direct projections on brain circuits involved in circadian rhythms, mood and alertness. Individual differences in the functionality of the melanopsin-signaling circuitry can be reliably quantified using the maximum post-illumination pupil response (PIPR) after blue light. Previous protocols for acquiring PIPR relied on the use of mydriatics to dilate the light-exposed eye. However, pharmacological pupil dilation is uncomfortable for the participants and requires ophthalmological expertise. Hence, we here investigated whether an individual's maximum PIPR can be validly obtained in a protocol that does not use mydriatics but rather increases the intensity of the light stimulus. In 18 participants (5 males, mean age ± SD: 34.6 ± 13.6 years) we evaluated the PIPR after exposure to intensified blue light (550 µW/cm²) provided to an undilated dynamic pupil. The test-retest reliability of the primary PIPR outcome parameter was very high, both between day-to-day assessments (Intraclass Correlation Coefficient (ICC) = 0.85), as well as between winter and summer assessments (ICC = 0.83). Compared to the PIPR obtained with the use of mydriatics and 160 µW/cm² blue light exposure, the method with intensified light without mydriatics showed almost zero bias according to Bland-Altman plots and had moderate to strong reliability (ICC = 0.67). In conclusion, for PIPR assessments, increasing the light intensity is a feasible and reliable alternative to pupil dilation to relieve the participant's burden and to allow for performance outside the ophthalmological clinic.
AB - Melanopsin-containing retinal ganglion cells play an important role in the non-image forming effects of light, through their direct projections on brain circuits involved in circadian rhythms, mood and alertness. Individual differences in the functionality of the melanopsin-signaling circuitry can be reliably quantified using the maximum post-illumination pupil response (PIPR) after blue light. Previous protocols for acquiring PIPR relied on the use of mydriatics to dilate the light-exposed eye. However, pharmacological pupil dilation is uncomfortable for the participants and requires ophthalmological expertise. Hence, we here investigated whether an individual's maximum PIPR can be validly obtained in a protocol that does not use mydriatics but rather increases the intensity of the light stimulus. In 18 participants (5 males, mean age ± SD: 34.6 ± 13.6 years) we evaluated the PIPR after exposure to intensified blue light (550 µW/cm²) provided to an undilated dynamic pupil. The test-retest reliability of the primary PIPR outcome parameter was very high, both between day-to-day assessments (Intraclass Correlation Coefficient (ICC) = 0.85), as well as between winter and summer assessments (ICC = 0.83). Compared to the PIPR obtained with the use of mydriatics and 160 µW/cm² blue light exposure, the method with intensified light without mydriatics showed almost zero bias according to Bland-Altman plots and had moderate to strong reliability (ICC = 0.67). In conclusion, for PIPR assessments, increasing the light intensity is a feasible and reliable alternative to pupil dilation to relieve the participant's burden and to allow for performance outside the ophthalmological clinic.
U2 - 10.3390/biology5030034
DO - 10.3390/biology5030034
M3 - Article
C2 - 27618116
SN - 2079-7737
VL - 5
JO - Biology (Basel)
JF - Biology (Basel)
IS - 3
ER -