Iron addition as a shallow lake restoration measure: impacts on charophyte growth

A. Immers, M.T. Van der Sande, R.M. Van der Zande, J.J.M. Geurts, E. Van Donk, E.S. Bakker

Research output: Contribution to journal/periodicalArticleScientificpeer-review

28 Citations (Scopus)
351 Downloads (Pure)


Eutrophication has caused a decline of charophyte species in many shallow lakes in Europe. Even though external inputs of phosphorus are declining, internal loading of P from the sediment seems to delay the recovery of these systems. Iron is a useful chemical binding agent to combat internal phosphorus loading. However, the effects of iron addition on charophytes are not yet known. In this study we experimentally tested the potential toxicity of iron(III)chloride (FeCl3) on two different charophytes, Chara virgata Kützing and Chara globularis Thuiller added at the concentration of 20 g Fe m−2 and 40 g Fe m−2 to the surface water. C. virgata growth was not significantly affected, whereas C. globularis growth significantly decreased with increasing iron concentrations. Nonetheless, biomass of both species increased in all treatments relative to starting conditions. The decrease of C. globularis biomass with high iron additions may have been caused by a drop in pH and alkalinity in combination with iron induced light limitation. Iron addition over a longer time scale, however, will not cause this rapid drop in pH. Therefore, we conclude that adding iron(III)chloride in these amounts to the surface water of a lake can potentially be a useful restoration method.
Original languageEnglish
Pages (from-to)241-251
Issue number1
Publication statusPublished - 2013


  • national


Dive into the research topics of 'Iron addition as a shallow lake restoration measure: impacts on charophyte growth'. Together they form a unique fingerprint.

Cite this