Iron mineral type controls organic matter stability and priming in paddy soil under anaerobic conditions

Shuang Wang, Wei Gao, Zhi Ma, Zhenke Zhu, Yu Luo, Liang Wei, Hongzhao Yuan, Song Chen, Chaoyun Ying, Kyle Mason-Jones, Yakov Kuzyakov, Tida Ge* (Corresponding author)

*Corresponding author for this work

Research output: Contribution to journal/periodicalArticleScientificpeer-review

1 Citation (Scopus)

Abstract

Associations of iron (hydr)oxides (FeOx) with organic carbon are vital in regulating the stability of soil organic carbon (SOC). Like SOC, FeOx is chemically dynamic in soils, particularly under anaerobic conditions. However, previous research has not clarified how the stability of FeOx (goethite versus ferrihydrite) and the formation pathway of FeOx-OC associations (adsorption versus coprecipitation) affect the stability of FeOx-bound OC and, subsequently, the priming effect (PE) under anaerobic conditions. With an aim to bridge this gap, we incubated paddy soils for 80 d under anaerobic conditions after adding free 13C-glucose, ferrihydrite- or goethite-bound 13C-glucose formed by either adsorption or coprecipitation. Compared with the free glucose addition, the FeOx-bound glucose addition increased 13CO2 production by 8%–21% but reduced 13C–CH4 production by 7%–10%. Ferrihydrite-bound glucose was mineralised more than goethite-bound glucose; this is consistent with its lower crystallinity facilitating reduction and, thus, higher OC bioavailability. Glucose induced a negative priming effect (PE) for CO2 but a positive PE for CH4, whereas FeOx-bound glucose showed the opposite trend. This may be because FeOx-bound glucose provides an energy source and electron acceptor for Fe-reducing bacteria; this promotes the dissimilating reduction of iron and combines with an aggravated microbial P limitation resulting from the FeOx input. The crystallinity of FeOx affected the amount of primed CH4 rather than its formation pathway. In conclusion, the crystallinity of FeOx controls the stability of FeOx-OC associations and the PE of SOC decomposition under anaerobic conditions.

Original languageEnglish
Article number109518
JournalSoil Biology and Biochemistry
Volume197
Early online date14 Jul 2024
DOIs
Publication statusPublished - Oct 2024

Keywords

  • Carbon sequestration
  • Fe reduction
  • Iron-bound organic carbon
  • Methane
  • Mineral-associated organic matter
  • Priming effect

Cite this