Long-Term Response toward Inorganic Carbon Limitation in Wild Type and Glycolate Turnover Mutants of the Cyanobacterium Synechocystis sp. Strain PCC 68031,[W]

M. Eisenhut, E. Aquirre von Wobeser, L. Jonas, H. Schubert, B.W. Ibelings, H. Bauwe, H.C.P. Matthijs, M. Hagemann

    Research output: Contribution to journal/periodicalArticleScientificpeer-review

    Abstract

    Concerted changes in the transcriptional pattern and physiological traits that result from long-term (here defined as up to 24 h) limitation of inorganic carbon (Ci) have been investigated for the cyanobacterium Synechocystis sp. strain PCC 6803. Results from reverse transcription-polymerase chain reaction and genome-wide DNA microarray analyses indicated stable up-regulation of genes for inducible CO2 and HCO3– uptake systems and of the rfb cluster that encodes enzymes involved in outer cell wall polysaccharide synthesis. Coordinated up-regulation of photosystem I genes was further found and supported by a higher photosystem I content and activity under low Ci (LC) conditions. Bacterial-type glycerate pathway genes were induced by LC conditions, in contrast to the genes for the plant-like photorespiratory C2 cycle. Down-regulation was observed for nitrate assimilation genes and surprisingly also for almost all carboxysomal proteins. However, for the latter the observed elongation of the half-life time of the large subunit of Rubisco protein may render compensation. Mutants defective in glycolate turnover (glcD and gcvT) showed some transcriptional changes under high Ci conditions that are characteristic for LC conditions in wild-type cells, like a modest down-regulation of carboxysomal genes. Properties under LC conditions were comparable to LC wild type, including the strong response of genes encoding inducible high-affinity Ci uptake systems. Electron microscopy revealed a conspicuous increase in number of carboxysomes per cell in mutant glcD already under high Ci conditions. These data indicate that an increased level of photorespiratory intermediates may affect carboxysomal components but does not intervene with the expression of majority of LC inducible genes.
    Original languageEnglish
    Pages (from-to)1946-1959
    JournalPlant Physiology
    Volume144
    Issue number4
    DOIs
    Publication statusPublished - 2007

    Fingerprint

    Dive into the research topics of 'Long-Term Response toward Inorganic Carbon Limitation in Wild Type and Glycolate Turnover Mutants of the Cyanobacterium Synechocystis sp. Strain PCC 68031,[W]'. Together they form a unique fingerprint.

    Cite this