TY - JOUR
T1 - MiR-184 expression is regulated by AMPK in pancreatic islets
AU - Martinez-Sanchez, Aida
AU - Nguyen-Tu, Marie-Sophie
AU - Cebola, Ines
AU - Yavari, Arash
AU - Marchetti, Piero
AU - Piemonti, Lorenzo
AU - de Koning, Eelco
AU - Shapiro, A M James
AU - Johnson, Paul
AU - Sakamoto, Kei
AU - Smith, David M
AU - Leclerc, Isabelle
AU - Ashrafian, Houman
AU - Ferrer, Jorge
AU - Rutter, Guy A
N1 - © FASEB.
PY - 2017/12/21
Y1 - 2017/12/21
N2 - AMPK is a critical energy sensor and target for widely used antidiabetic drugs. In β-cells, elevated glucose concentrations lower AMPK activity, and the ablation of both catalytic subunits (βAMPKdKO mice) impairs insulin secretion in vivo and β-cell identity. MicroRNAs (miRNAs) are small RNAs that silence gene expression that are essential for pancreatic β-cell function and identity and altered in diabetes. Here, we have explored the miRNAs acting downstream of AMPK in mouse and human β-cells. We identified 14 down-regulated and 9 up-regulated miRNAs in βAMPKdKO vs. control islets. Gene ontology analysis of targeted transcripts revealed enrichment in pathways important for β-cell function and identity. The most down-regulated miRNA was miR-184 (miR-184-3p), an important regulator of β-cell function and compensatory expansion that is controlled by glucose and reduced in diabetes. We demonstrate that AMPK is a potent regulator and an important mediator of the negative effects of glucose on miR-184 expression. Additionally, we reveal sexual dimorphism in miR-184 expression in mouse and human islets. Collectively, these data demonstrate that glucose-mediated changes in AMPK activity are central for the regulation of miR-184 and other miRNAs in islets and provide a link between energy status and gene expression in β-cells.-Martinez-Sanchez, A., Nguyen-Tu, M.-S., Cebola, I., Yavari, A., Marchetti, P., Piemonti, L., de Koning, E., Shapiro, A. M. J., Johnson, P., Sakamoto, K., Smith, D. M., Leclerc, I., Ashrafian, H., Ferrer, J., Rutter, G. A. MiR-184 expression is regulated by AMPK in pancreatic islets.
AB - AMPK is a critical energy sensor and target for widely used antidiabetic drugs. In β-cells, elevated glucose concentrations lower AMPK activity, and the ablation of both catalytic subunits (βAMPKdKO mice) impairs insulin secretion in vivo and β-cell identity. MicroRNAs (miRNAs) are small RNAs that silence gene expression that are essential for pancreatic β-cell function and identity and altered in diabetes. Here, we have explored the miRNAs acting downstream of AMPK in mouse and human β-cells. We identified 14 down-regulated and 9 up-regulated miRNAs in βAMPKdKO vs. control islets. Gene ontology analysis of targeted transcripts revealed enrichment in pathways important for β-cell function and identity. The most down-regulated miRNA was miR-184 (miR-184-3p), an important regulator of β-cell function and compensatory expansion that is controlled by glucose and reduced in diabetes. We demonstrate that AMPK is a potent regulator and an important mediator of the negative effects of glucose on miR-184 expression. Additionally, we reveal sexual dimorphism in miR-184 expression in mouse and human islets. Collectively, these data demonstrate that glucose-mediated changes in AMPK activity are central for the regulation of miR-184 and other miRNAs in islets and provide a link between energy status and gene expression in β-cells.-Martinez-Sanchez, A., Nguyen-Tu, M.-S., Cebola, I., Yavari, A., Marchetti, P., Piemonti, L., de Koning, E., Shapiro, A. M. J., Johnson, P., Sakamoto, K., Smith, D. M., Leclerc, I., Ashrafian, H., Ferrer, J., Rutter, G. A. MiR-184 expression is regulated by AMPK in pancreatic islets.
KW - Journal Article
U2 - 10.1096/fj.201701100R
DO - 10.1096/fj.201701100R
M3 - Article
C2 - 29269398
SN - 0892-6638
JO - FASEB Journal
JF - FASEB Journal
ER -