Abstract
The mode of inheritance of the male sterility trait is crucial for understanding the evolutionary dynamics of the sexual system gynodioecy, which is the co-occurrence of female and hermaphrodite plants in natural populations. Both cytoplasmic (CMS) and nuclear (restorer) genes are known to be involved. Theoretical models usually assume a limited number of CMS genes with each a single restorer gene, while reality is more complex. In this study, it is shown that in the gynodioecious species Plantago coronopus two new CMS-restorer polymorphisms exist in addition to the two that were already known, which means four CMS-restorer systems at the species level. Furthermore, three CMS types were shown to co-occur within a single population. All new CMS types showed a multilocus system for male fertility restoration, in which both recessive and dominant restorer alleles occur. Our finding of more than two co-occurring CMS-restorer systems each with multiple restorer genes raises the question how this complex of male sterility systems is maintained in natural populations
Original language | English |
---|---|
Pages (from-to) | 175-181 |
Journal | Heredity |
Volume | 93 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2004 |
Keywords
- NIOO/CTE/PVP