TY - JOUR
T1 - Niche differentiation of atmospheric methane-oxidizing bacteria and their community assembly in subsurface karst caves
AU - Cheng, Xiaoyu
AU - Wang, Hongmei
AU - Zeng, Zhilin
AU - Li, Lu
AU - Zhao, Rui
AU - Bodelier, Paul L.E.
AU - Wang, Yiheng
AU - Liu, Xiaoyan
AU - Su, Chuntian
AU - Liu, Shuangjiang
N1 - Data archiving: no NIOO data
PY - 2022
Y1 - 2022
N2 - Karst caves are recently proposed as atmospheric methane sinks in terrestrial ecosystems. Despite of the detection of atmospheric methane-oxidizing bacteria (atmMOB) in caves, we still know little about their ecology and potential ability of methane oxidation in this ecosystem. To understand atmMOB ecology and their potential in methane consumption, we collected weathered rocks and sediments from three different caves in southwestern China. We determined the potential methane oxidization rates in the range of 1.25 ± 0.08 to 1.87 ± 0.41 ng CH4 g−1 DW h−1, which are comparable to those reported in forest and grassland soils. Results showed that alkaline oligotrophic caves harbour high numbers of atmMOB, particularly upland soil cluster (USC), which significantly correlated with temperature, CH4 and CO2 concentrations. The absolute abundance of USCγ was higher than that of USCα. USCγ-OPS (open patch soil) and USCγ-SS (subsurface soil) dominated in most samples, whereas USCα-BFS (boreal forest soil) only predominated in the sediments near cave entrances, indicating niche differentiation of atmMOB in caves. Overwhelming dominance of homogenous selection in community assembly resulted in convergence of atmMOB communities. Collectively, our results demonstrated the niche differentiation of USC in subsurface alkaline caves and their non-negligible methane-oxidizing potential, providing brand-new knowledge about atmMOB ecology in subsurface biosphere.
AB - Karst caves are recently proposed as atmospheric methane sinks in terrestrial ecosystems. Despite of the detection of atmospheric methane-oxidizing bacteria (atmMOB) in caves, we still know little about their ecology and potential ability of methane oxidation in this ecosystem. To understand atmMOB ecology and their potential in methane consumption, we collected weathered rocks and sediments from three different caves in southwestern China. We determined the potential methane oxidization rates in the range of 1.25 ± 0.08 to 1.87 ± 0.41 ng CH4 g−1 DW h−1, which are comparable to those reported in forest and grassland soils. Results showed that alkaline oligotrophic caves harbour high numbers of atmMOB, particularly upland soil cluster (USC), which significantly correlated with temperature, CH4 and CO2 concentrations. The absolute abundance of USCγ was higher than that of USCα. USCγ-OPS (open patch soil) and USCγ-SS (subsurface soil) dominated in most samples, whereas USCα-BFS (boreal forest soil) only predominated in the sediments near cave entrances, indicating niche differentiation of atmMOB in caves. Overwhelming dominance of homogenous selection in community assembly resulted in convergence of atmMOB communities. Collectively, our results demonstrated the niche differentiation of USC in subsurface alkaline caves and their non-negligible methane-oxidizing potential, providing brand-new knowledge about atmMOB ecology in subsurface biosphere.
UR - https://www.biosino.org/node/project/detail/OEP002698
U2 - 10.1111/1758-2229.13112
DO - 10.1111/1758-2229.13112
M3 - Article
AN - SCOPUS:85136797389
SN - 1758-2229
VL - 14
SP - 886
EP - 896
JO - Environmental Microbiology Reports
JF - Environmental Microbiology Reports
IS - 6
ER -