Phosphorylation dynamics during early differentiation of human embryonic stem cells

D. van Hoof, J. Munoz, S.R. Braam, M.W.H. Pinkse, R. Linding, A.J.R. Heck, C.L. Mummery, J. Krijgsveld

Research output: Contribution to journal/periodicalArticleScientificpeer-review

283 Citations (Scopus)


Pluripotent stem cells self-renew indefinitely and possess characteristic protein-protein networks that remodel during differentiation. How this occurs is poorly understood. Using quantitative mass spectrometry, we analyzed the (phospho)proteome of human embryonic stem cells (hESCs) during differentiation induced by bone morphogenetic protein (BMP) and removal of hESC growth factors. Of 5222 proteins identified, 1399 were phosphorylated on 3067 residues. Approximately 50% of these phosphosites were regulated within 1 hr of differentiation induction, revealing a complex interplay of phosphorylation networks spanning different signaling pathways and kinase activities. Among the phosphorylated proteins was the pluripotency-associated protein SOX2, which was SUMOylated as a result of phosphorylation. Using the data to predict kinase-substrate relationships, we reconstructed the hESC kinome; CDK1/2 emerged as central in controlling self-renewal and lineage specification. The findings provide new insights into how hESCs exit the pluripotent state and present the hESC (phospho)proteome resource as a complement to existing pluripotency network databases.
Original languageEnglish
Pages (from-to)214-226
JournalCell Stem Cell
Issue number2
Publication statusPublished - 2009


Dive into the research topics of 'Phosphorylation dynamics during early differentiation of human embryonic stem cells'. Together they form a unique fingerprint.

Cite this