TY - JOUR
T1 - Promiscuous mitochondria in Cryptococcus gattii
AU - Bovers, M.
AU - Hagen, F.
AU - Kuramae, E.E.
AU - Boekhout, T.
N1 - Reporting year: 2009
Metis note: 5242; CTE; ME
PY - 2009
Y1 - 2009
N2 - Cryptococcus gattii is a primary pathogenic basidiomycetous yeast comprising four genotypic groups. Here we present data on two mitochondrial loci (MtLrRNA and ATP6). Two of the genotypic groups, namely amplified fragment length polymorphism (AFLP)5/VGIII and AFLP6/VGII, formed monophyletic lineages. The AFLP4/VGI genotypic group, however, possessed five different mitochondrial genotypes that did not form a monophyletic lineage. The majority of these isolates contained mitochondrial genomes that are partially identical to those found in isolates belonging to AFLP6/VGII, which is causing the ongoing and expanding Vancouver Island outbreak. Two out of four AFLP7/VGIV isolates contained an AFLP4/VGI allele of MtLrRNA. These observations are best explained by assuming a process of mitochondrial recombination. If this is true, mitochondrial recombination seems possible between cells belonging to different genotypic groups of C. gattii, especially between AFLP6/VGII or AFLP7/VGIV and AFLP4/VGI. We also have to assume that mitochondria, most likely, were transferred from cells belonging to AFLP6/VGII to AFLP4/VGI. As such a process of mitochondrial recombination is only possible after cell-cell conjugation, this may also allow the further exchange of genetic material, for example nuclear or plasmid in nature, between different genotypes of C. gattii. This may be relevant as it may provide a possible mechanism contributing to the modulation of virulence attributes of isolates, such as has been observed in the ongoing Vancouver Island outbreak of C. gattii.
AB - Cryptococcus gattii is a primary pathogenic basidiomycetous yeast comprising four genotypic groups. Here we present data on two mitochondrial loci (MtLrRNA and ATP6). Two of the genotypic groups, namely amplified fragment length polymorphism (AFLP)5/VGIII and AFLP6/VGII, formed monophyletic lineages. The AFLP4/VGI genotypic group, however, possessed five different mitochondrial genotypes that did not form a monophyletic lineage. The majority of these isolates contained mitochondrial genomes that are partially identical to those found in isolates belonging to AFLP6/VGII, which is causing the ongoing and expanding Vancouver Island outbreak. Two out of four AFLP7/VGIV isolates contained an AFLP4/VGI allele of MtLrRNA. These observations are best explained by assuming a process of mitochondrial recombination. If this is true, mitochondrial recombination seems possible between cells belonging to different genotypic groups of C. gattii, especially between AFLP6/VGII or AFLP7/VGIV and AFLP4/VGI. We also have to assume that mitochondria, most likely, were transferred from cells belonging to AFLP6/VGII to AFLP4/VGI. As such a process of mitochondrial recombination is only possible after cell-cell conjugation, this may also allow the further exchange of genetic material, for example nuclear or plasmid in nature, between different genotypes of C. gattii. This may be relevant as it may provide a possible mechanism contributing to the modulation of virulence attributes of isolates, such as has been observed in the ongoing Vancouver Island outbreak of C. gattii.
U2 - 10.1111/j.1567-1364.2009.00494.x
DO - 10.1111/j.1567-1364.2009.00494.x
M3 - Article
SN - 1567-1356
VL - 9
SP - 489
EP - 503
JO - FEMS Yeast Research
JF - FEMS Yeast Research
IS - 3
ER -