Quantification of mRNA translation in live cells using single-molecule imaging

Deepak Khuperkar, Tim A Hoek, Stijn Sonneveld, Bram M P Verhagen, Sanne Boersma, Marvin E Tanenbaum

Research output: Contribution to journal/periodicalArticleScientificpeer-review

Abstract

mRNA translation is a key step in gene expression. Proper regulation of translation efficiency ensures correct protein expression levels in the cell, which is essential to cell function. Different methods used to study translational control in the cell rely on population-based assays that do not provide information about translational heterogeneity between cells or between mRNAs of the same gene within a cell, and generally provide only a snapshot of translation. To study translational heterogeneity and measure translation dynamics, we have developed microscopy-based methods that enable visualization of translation of single mRNAs in live cells. These methods consist of a set of genetic tools, an imaging-based approach and sophisticated computational tools. Using the translation imaging method, one can investigate many new aspects of translation in single living cells, such as translation start-site selection, 3'-UTR (untranslated region) translation and translation-coupled mRNA decay. Here, we describe in detail how to perform such experiments, including reporter design, cell line generation, image acquisition and analysis. This protocol also provides a detailed description of the image analysis pipeline and computational modeling that will enable non-experts to correctly interpret fluorescence measurements. The protocol takes 2-4 d to complete (after cell lines expressing all required transgenes have been generated).

Original languageEnglish
Pages (from-to)1371-1398
Number of pages28
JournalNature Protocols
Volume15
Issue number4
DOIs
Publication statusPublished - Apr 2020

Keywords

  • HEK293 Cells
  • Humans
  • Image Processing, Computer-Assisted/methods
  • Protein Biosynthesis/genetics
  • RNA, Messenger/analysis
  • Single Molecule Imaging/methods

Fingerprint

Dive into the research topics of 'Quantification of mRNA translation in live cells using single-molecule imaging'. Together they form a unique fingerprint.

Cite this