Documents

Links

DOI

Plant range expansion is occurring at a rapid pace, largely in response to human-induced climate warming. Although the movement of plants along latitudinal and altitudinal gradients is well-documented, effects on belowground microbial communities remain largely unknown. Furthermore, for range expansion, not all plant species are equal: in a new range, the relatedness between range-expanding plant species and native flora can influence plant–microorganism interactions. Here we use a latitudinal gradient spanning 3,000 km across Europe to examine bacterial and fungal communities in the rhizosphere and surrounding soils of range-expanding plant species. We selected range-expanding plants with and without congeneric native species in the new range and, as a control, the congeneric native species, totalling 382 plant individuals collected across Europe. In general, the status of a plant as a range-expanding plant was a weak predictor of the composition of bacterial and fungal communities. However, microbial communities of range-expanding plant species became more similar to each other further from their original range. Range-expanding plants that were unrelated to the native community also experienced a decrease in the ratio of plant pathogens to symbionts, giving weak support to the enemy release hypothesis. Even at a continental scale, the effects of plant range expansion on the belowground microbiome are detectable, although changes to specific taxa remain difficult to decipher.
Original languageEnglish
JournalNature Ecology and Evolution
DOI
Publication statusPublished - 2019

    Research areas

  • international

ID: 9793013