Abstract
Worldwide, water quality managers target a clear, macrophyte-dominated state over a turbid, phytoplankton-dominated state in shallow lakes. The competition mechanisms underlying these ecological states were explored in the 1990s, but the concept of critical turbidity seems neglected in contemporary water quality models. In particular, a simple mechanistic model of alternative stable states in shallow lakes accounting for resource competition mechanisms and critical turbidity is lacking. To this end, we combined Scheffer's theory on critical turbidity with insights from nutrient and light competition theory founded by Tilman, Huisman and Weissing. This resulted in a novel graphical and mathematical model, GPLake-M, that is relatively simple and mechanistically understandable and yet captures the essential mechanisms leading to alternative stable states in shallow lakes. The process-based PCLake model was used to parameterize the model parameters and to test GPLake-M using a pattern-oriented strategy. GPLake-M's application range and position in the model spectrum are discussed. We believe that our results support the fundamental understanding of regime shifts in shallow lakes and provide a starting point for further mechanistic and management-focused explorations and model development. Furthermore, the concept of critical turbidity and the relation between light-limited submerged macrophytes and nutrient-limited phytoplankton might provide a new focus for empirical aquatic ecological research and water quality monitoring programs.
Original language | English |
---|---|
Article number | 119950 |
Journal | Water Research |
Volume | 242 |
Early online date | 21 Jun 2023 |
DOIs | |
Publication status | Published - 15 Aug 2023 |
Keywords
- Alternative stable states
- Ecological modeling
- Eutrophication management
- Resource competition theory
- Submerged macrophytes