Revisiting life strategy concepts in environmental microbial ecology

A. Ho (Corresponding author), P. Di Lonardo, P.L.E. Bodelier

Research output: Contribution to journal/periodicalArticleScientificpeer-review

412 Citations (Scopus)
112 Downloads (Pure)


Microorganisms are physiologically diverse, possessing disparate genomic features and mechanisms for adaptation (functional traits), which reflect on their associated life strategies and determine at least to some extent their prevalence and distribution in the environment. Unlike animals and plants, there is an unprecedented diversity and intractable metabolic versatility among bacteria, making classification or grouping these microorganisms based on their functional traits as has been done in animal and plant ecology challenging. Nevertheless, based on representative pure cultures, microbial traits distinguishing different life strategies had been proposed, and had been the focus of previous reviews. In the environment, however, the vast majority of naturally-occurring microorganisms have yet to be isolated, restricting the association of life strategies to broad phylogenetic groups and/or physiological characteristics. Here, we reviewed the literature to determine how microbial life strategy concepts (i.e. copio- and oligo-trophic strategist, and Competitor-Stress tolerator-Ruderals, CSR framework) are applied in complex microbial communities. Because of the scarcity of direct empirical evidence elucidating the associated life strategies in complex communities, we rely heavily on observational studies determining the response of microorganisms to (a)biotic cues (e.g. resource availability) to infer microbial life strategies. Although our focus is on the life strategies of bacteria, parallels were drawn from the fungal community. Our literature search showed inconsistency in the community response of proposed copiotrophic- and oligotrophic-associated microorganisms (phyla level) to changing environmental conditions. This suggests that tracking microorganisms at finer phylogenetic and taxonomic resolution (e.g. family level or lower) may be more effective to capture changes in community response and/or that edaphic factors exert a stronger effect in community response. We discuss the limitations, and provide recommendations for future research applying microbial life strategies in environmental studies.
Original languageEnglish
Article numberfix006
JournalFEMS Microbiology Ecology
Issue number3
Early online date2017
Publication statusPublished - 2017


  • NIOO


Dive into the research topics of 'Revisiting life strategy concepts in environmental microbial ecology'. Together they form a unique fingerprint.

Cite this