• 6814_vandenHoogen

    Final published version, 7 MB, PDF-document

    Request copy



  • Johan van den Hoogen (Corresponding author)
  • Devin Routh
  • Howard Ferris
  • Walter Traunspurger
  • David A Wardle
  • Ron G M de Goede
  • Byron J Adams
  • Wasim Ahmad
  • Walter S Andriuzzi
  • Richard D Bardgett
  • Michael Bonkowski
  • Raquel Campos-Herrera
  • Juvenil E Cares
  • Tancredi Caruso
  • Larissa de Brito Caixeta
  • Xiaoyun Chen
  • Sofia R Costa
  • Rachel Creamer
  • José Mauro da Cunha Castro
  • Marie Dam
  • Djibril Djigal
  • Miguel Escuer
  • Bryan S Griffiths
  • Carmen Gutiérrez
  • Karin Hohberg
  • Daria Kalinkina
  • Alan Kergunteuil
  • Valentyna Krashevska
  • Alexey A Kudrin
  • Qi Li
  • Wenju Liang
  • Matthew Magilton
  • Mariette Marais
  • José Antonio Rodríguez Martín
  • Elizaveta Matveeva
  • El Hassan Mayad
  • Christian Mulder
  • Peter Mullin
  • Roy Neilson
  • T A Duong Nguyen
  • Uffe N Nielsen
  • Hiroaki Okada
  • Juan Emilio Palomares Rius
  • Kaiwen Pan
  • Vlada Peneva
  • Loïc Pellissier
  • Julio Carlos Pereira da Silva
  • Camille Pitteloud
  • Thomas O Powers
  • Kirsten Powers
  • Sergio Rasmann
  • Sara Sánchez Moreno
  • Stefan Scheu
  • Heikki Setälä
  • Anna Sushchuk
  • Alexei V Tiunov
  • Jean Trap
  • Mette Vestergård
  • Cecile Villenave
  • Lieven Waeyenberge
  • Diana H Wall
  • Daniel G Wright
  • Jiue-In Yang
  • Thomas Ward Crowther (Corresponding author)

Soil organisms are a crucial part of the terrestrial biosphere. Despite their importance for ecosystem functioning, few quantitative, spatially explicit models of the active belowground community currently exist. In particular, nematodes are the most abundant animals on Earth, filling all trophic levels in the soil food web. Here we use 6,759 georeferenced samples to generate a mechanistic understanding of the patterns of the global abundance of nematodes in the soil and the composition of their functional groups. The resulting maps show that 4.4 ± 0.64 × 1020 nematodes (with a total biomass of approximately 0.3 gigatonnes) inhabit surface soils across the world, with higher abundances in sub-Arctic regions (38% of total) than in temperate (24%) or tropical (21%) regions. Regional variations in these global trends also provide insights into local patterns of soil fertility and functioning. These high-resolution models provide the first steps towards representing soil ecological processes in global biogeochemical models and will enable the prediction of elemental cycling under current and future climate scenarios.

Original languageEnglish
Pages (from-to)194-198
Number of pages5
Issue number7768
Publication statusPublished - Aug 2019

    Research areas

  • international

ID: 11621297