Spatial and Temporal Variability in Concentration-Discharge Relationships at the Event Scale

Andreas Musolff (Corresponding author), Qing Zhan, Remí Dupas, Camille Minaudo, Jan H. Fleckenstein, Michael Rode, Joni Dehaspe, Karsten Rinke

Research output: Contribution to journal/periodicalArticleScientificpeer-review

26 Citations (Scopus)
115 Downloads (Pure)


The analysis of concentration-discharge (C-Q) relationships from low-frequency observations is commonly used to assess solute sources, mobilization, and reactive transport processes at the catchment scale. High-frequency concentration measurements are increasingly available and offer additional insights into event-scale export dynamics. However, only few studies have integrated inter-annual and event-scale C-Q relationships. Here, we analyze high-frequency measurements of specific conductance (EC), nitrate (NO3-N) concentrations and spectral absorbance at 254 nm (SAC254, as a proxy for dissolved organic carbon) over a two year period for four neighboring catchments in Germany ranging from more pristine forested to agriculturally managed settings. We apply an integrated method that adds a hysteresis term to the established power law C-Q model so that concentration intercept, C-Q slope and hysteresis can be characterized simultaneously. We found that inter-event variability in C-Q hysteresis and slope were most pronounced for SAC254 in all catchments and for NO3-N in forested catchments. SAC254 and NO3-N event responses in the smallest forested catchment were closely coupled and explainable by antecedent conditions that hint to a common near-stream source. In contrast, the event-scale C-Q patterns of EC in all catchments and of NO3-N in the agricultural catchment without buffer zones around streams were less variable and similar to the inter-annual C-Q relationship indicating a homogeneity of mobilization processes over time. Event-scale C-Q analysis thus added key insights into catchment functioning whenever the inter-annual C-Q relationship contrasted with event-scale responses. Analyzing long-term and event-scale behavior in one coherent framework helps to disentangle these scattered C-Q patterns.
Original languageEnglish
Article numbere2020WR029442
JournalWater Resources Research
Issue number10
Publication statusPublished - 2021


  • international
  • Plan_S-Compliant_OA

Research theme

  • No theme


Dive into the research topics of 'Spatial and Temporal Variability in Concentration-Discharge Relationships at the Event Scale'. Together they form a unique fingerprint.

Cite this