TY - JOUR
T1 - Stress-induced hyperthermia and basal body temperature are mediated by different 5-HT(1A) receptor populations: a study in SERT knockout rats.
AU - Olivier, J.
AU - Cools, A.R.
AU - Olivier, B.
AU - Homberg, J.R.
AU - Cuppen, E.
AU - Ellenbroek, B.A.
N1 - Reporting year: 2008
PY - 2008
Y1 - 2008
N2 - Disturbances in the serotonergic system are implicated in many central nervous system disorders. The serotonin transporter (SERT) regulates the serotonin homeostasis in the synapse. We recently developed a rat which lacks the serotonin transporter (SERT(-/-)). It is likely that adaptive changes take place at the level of pre- and postsynaptic 5-HT receptors. Because autonomic responses are often used to measure 5-HT(1A) receptor function, we analysed these responses by examining the effects of a 5-HT(1A) receptor agonist and antagonist under in vivo conditions in the SERT(-/-) rat. Moreover, we studied the effect of a mild stressor on the body temperature (stress-induced hyperthermia) because of the known involvement of 5-HT(1A) receptors in this phenomenon. Results show that core body temperature did not differ between genotypes under basal, non-stressed conditions. Compared to SERT(+/+) rats, stress-induced hyperthermia was reduced in SERT(-/-) rats. The 5-HT(1A) receptor agonist [R(+)-N-(2[4-(2,3-dihydro-2-2-hydroxy-methyl-1,4-benzodioxin-5-yl)-1-piperazininy l]ethyl)-4-fluorobenzoamide HCl (flesinoxan) reduced stress-induced hyperthermia in both genotypes. The flesinoxan-induced hypothermia in SERT(+/+) rats was blocked by the 5-HT(1A) receptor antagonist [N-(2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl)-N-(2-pyridinyl) cyclohexane carboxamide 3HCl (WAY100635). Moreover, WAY100635-induced hyperthermia in SERT(-/-), but not in SERT(+/+) rats. In SERT(-/-) rats, WAY100635 completely blocked the flesinoxan-induced reduction of stress-induced hyperthermia. Interestingly, flesinoxan-induced hypothermia was absent in SERT(-/-) rats. It is concluded that the SERT knockout rat reveals that 5-HT(1A) receptors modulating stress-induced hyperthermia belong to a population of receptors that differs from that involved in hypothermia.
AB - Disturbances in the serotonergic system are implicated in many central nervous system disorders. The serotonin transporter (SERT) regulates the serotonin homeostasis in the synapse. We recently developed a rat which lacks the serotonin transporter (SERT(-/-)). It is likely that adaptive changes take place at the level of pre- and postsynaptic 5-HT receptors. Because autonomic responses are often used to measure 5-HT(1A) receptor function, we analysed these responses by examining the effects of a 5-HT(1A) receptor agonist and antagonist under in vivo conditions in the SERT(-/-) rat. Moreover, we studied the effect of a mild stressor on the body temperature (stress-induced hyperthermia) because of the known involvement of 5-HT(1A) receptors in this phenomenon. Results show that core body temperature did not differ between genotypes under basal, non-stressed conditions. Compared to SERT(+/+) rats, stress-induced hyperthermia was reduced in SERT(-/-) rats. The 5-HT(1A) receptor agonist [R(+)-N-(2[4-(2,3-dihydro-2-2-hydroxy-methyl-1,4-benzodioxin-5-yl)-1-piperazininy l]ethyl)-4-fluorobenzoamide HCl (flesinoxan) reduced stress-induced hyperthermia in both genotypes. The flesinoxan-induced hypothermia in SERT(+/+) rats was blocked by the 5-HT(1A) receptor antagonist [N-(2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl)-N-(2-pyridinyl) cyclohexane carboxamide 3HCl (WAY100635). Moreover, WAY100635-induced hyperthermia in SERT(-/-), but not in SERT(+/+) rats. In SERT(-/-) rats, WAY100635 completely blocked the flesinoxan-induced reduction of stress-induced hyperthermia. Interestingly, flesinoxan-induced hypothermia was absent in SERT(-/-) rats. It is concluded that the SERT knockout rat reveals that 5-HT(1A) receptors modulating stress-induced hyperthermia belong to a population of receptors that differs from that involved in hypothermia.
U2 - 10.1016/j.ejphar.2008.06.008
DO - 10.1016/j.ejphar.2008.06.008
M3 - Article
SN - 0014-2999
VL - 590
SP - 190
EP - 197
JO - European Journal of Pharmacology
JF - European Journal of Pharmacology
IS - 1-3
ER -