The abundance of arbuscular mycorrhiza in soils is linked to the total length of roots colonized at ecosystem level

Milagros Barceló (Corresponding author), Peter M. van Bodegom, Leho Tedersoo, Nadja den Haan, G.F. Veen, Ivika Ostonen, Krijn Trimbos, Nadejda A. Soudsilovskaia

Research output: Contribution to journal/periodicalArticleScientificpeer-review

28 Citations (Scopus)
64 Downloads (Pure)

Abstract

Arbuscular mycorrhizal fungi (AMF) strongly affect ecosystem functioning. To understand and quantify the mechanisms of this control, knowledge about the relationship between the actual abundance and community composition of AMF in the soil and in plant roots is needed. We collected soil and root samples in a natural dune grassland to test whether, across a plant community, the abundance of AMF in host roots (measured as the total length of roots colonized) is related to soil AMF abundance (using the neutral lipid fatty acids (NLFA) 16:1ω5 as proxy). Next-generation sequencing was used to explore the role of community composition in abundance patterns. We found a strong positive relationship between the total length of roots colonized by AMF and the amount of NLFA 16:1ω5 in the soil. We provide the first field-based evidence of proportional biomass allocation between intra-and extraradical AMF mycelium, at ecosystem level. We suggest that this phenomenon is made possible by compensatory colonization strategies of individual fungal species. Finally, our findings open the possibility of using AMF total root colonization as a proxy for soil AMF abundances, aiding further exploration of the AMF impacts on ecosystems functioning.
Original languageEnglish
Article numbere0237256
Number of pages11
JournalPLoS One
Early online date2020
DOIs
Publication statusPublished - 11 Sept 2020

Keywords

  • international
  • Plan_S-Compliant_OA

Fingerprint

Dive into the research topics of 'The abundance of arbuscular mycorrhiza in soils is linked to the total length of roots colonized at ecosystem level'. Together they form a unique fingerprint.

Cite this