The power of species sorting: Local factors drive bacterial community composition over a wide range of spatial scales

K. van der Gucht, K. Cottenie, K. Muylaert, N. Vloemans, S. Cousin, S.A.J. Declerck, E. Jeppesen, J-M. Conde-Porcuna, K. Schwenk, G. Zwart, H. Degans, W. Vyverman, L. De Meester

Research output: Contribution to journal/periodicalArticleScientificpeer-review

347 Citations (Scopus)
275 Downloads (Pure)


There is a vivid debate on the relative importance of local and regional factors in shaping microbial communities, and on whether microbial organisms show a biogeographic signature in their distribution. Taking a metacommunity approach, spatial factors can become important either through dispersal limitation (compare large spatial scales) or mass effects (in case of strongly connected systems). We here analyze two datasets on bacterial communities [characterized by community fingerprinting through denaturing gradient gel electrophoresis (DGGE)] in meso- to eutrophic shallow lakes to investigate the importance of spatial factors at three contrasting scales. Variation partitioning on datasets of both the bacterial communities of 11 shallow lakes that are part of a strongly interconnected and densely packed pond system 2,500 km) shows a strong impact of local environmental factors on bacterial community composition, with a marginal impact of spatial distance. Our results indicate that dispersal is not strongly limiting even at large spatial scales, and that mass effects do not have a strong impact on bacterial communities even in physically connected systems. We suggest that the fast population growth rates of bacteria facilitate efficient species sorting along environmental gradients in bacterial communities over a very broad range of dispersal rates.
Original languageEnglish
Pages (from-to)20404-20409
JournalProceedings of the National Academy of Sciences of the United States of America
Issue number51
Publication statusPublished - 2007


Dive into the research topics of 'The power of species sorting: Local factors drive bacterial community composition over a wide range of spatial scales'. Together they form a unique fingerprint.

Cite this