Trophic specialisation of metazoan meiofauna at the Håkon Mosby Mud Volcano: fatty acid biomarker isotope evidence

S. Van Gaever, L. Moodley, F. Pasotti, M.J. Houtekamer, J.J. Middelburg, R. Danovaro, A. Vanreusel

    Research output: Contribution to journal/periodicalArticleScientificpeer-review

    659 Downloads (Pure)

    Abstract

    We report the results of a detailed investigation on the trophoecology of two dominant meiofaunal species at the Håkon Mosby Mud Volcano (HMMV), a deep-sea cold methane-venting seep. Analyses of fatty acids (FAs) and their stable carbon isotopes were used to determine the importance of chemosynthetic nutritional pathways for the dominant copepod species (morphologically very similar to Tisbe wilsoni) inhabiting the volcano’s centre and the abundant nematode Halomonhystera disjuncta from the surrounding microbial mats. The strong dominance of bacterial biomarkers (16:1ω7c, 18:1ω7c and 16:1ω8c) coupled with their individual light carbon isotopes signatures (δ 13C ranging from −52 to −81‰) and the lack of symbiotic relationships with prokaryotes (as revealed by molecular analyses and fluorescent in situ hybridisation) indicated that chemosynthetically derived carbon constitutes the main diet of both species. However, the copepod showed a stronger reliance on the utilisation of methanotrophic bacteria and contained polyunsaturated FAs of bacterial origin (20:5ω3 and 22:6ω3 with isotope signatures δ 13C <−80‰). Instead, the FA profiles of H. disjuncta suggested that sulphide-oxidising bacteria constituted the main diet of this nematode. Therefore, HMMV can be regarded as a persistent deep-sea cold seep, allowing a chemosynthesis-based trophic specialisation by the dominant meiofaunal species inhabiting its sediments. The present investigation, through the determination of the fatty acid profiles, provides the first evidence for trophic specialisation of meiofauna associated with sub-habitats within a cold seep.
    Original languageEnglish
    Pages (from-to)1289-1296
    JournalMarine Biology
    Volume156
    Issue number6
    DOIs
    Publication statusPublished - 2009

    Fingerprint

    Dive into the research topics of 'Trophic specialisation of metazoan meiofauna at the Håkon Mosby Mud Volcano: fatty acid biomarker isotope evidence'. Together they form a unique fingerprint.

    Cite this