Standard

Trophic specialisation of metazoan meiofauna at the Håkon Mosby Mud Volcano: fatty acid biomarker isotope evidence. / Van Gaever, S.; Moodley, L.; Pasotti, F.; Houtekamer, M.J.; Middelburg, J.J.; Danovaro, R.; Vanreusel, A.

In: Marine Biology, Vol. 156, No. 6, 2009, p. 1289-1296.

Research output: Contribution to journal/periodicalArticleScientificpeer-review

Harvard

APA

Vancouver

Author

Van Gaever, S. ; Moodley, L. ; Pasotti, F. ; Houtekamer, M.J. ; Middelburg, J.J. ; Danovaro, R. ; Vanreusel, A./ Trophic specialisation of metazoan meiofauna at the Håkon Mosby Mud Volcano: fatty acid biomarker isotope evidence. In: Marine Biology. 2009 ; Vol. 156, No. 6. pp. 1289-1296

BibTeX

@article{dff6cfbdb8244b638f6fd8a39d4cb559,
title = "Trophic specialisation of metazoan meiofauna at the H{\aa}kon Mosby Mud Volcano: fatty acid biomarker isotope evidence",
abstract = "We report the results of a detailed investigation on the trophoecology of two dominant meiofaunal species at the H{\aa}kon Mosby Mud Volcano (HMMV), a deep-sea cold methane-venting seep. Analyses of fatty acids (FAs) and their stable carbon isotopes were used to determine the importance of chemosynthetic nutritional pathways for the dominant copepod species (morphologically very similar to Tisbe wilsoni) inhabiting the volcano’s centre and the abundant nematode Halomonhystera disjuncta from the surrounding microbial mats. The strong dominance of bacterial biomarkers (16:1ω7c, 18:1ω7c and 16:1ω8c) coupled with their individual light carbon isotopes signatures (δ 13C ranging from −52 to −81‰) and the lack of symbiotic relationships with prokaryotes (as revealed by molecular analyses and fluorescent in situ hybridisation) indicated that chemosynthetically derived carbon constitutes the main diet of both species. However, the copepod showed a stronger reliance on the utilisation of methanotrophic bacteria and contained polyunsaturated FAs of bacterial origin (20:5ω3 and 22:6ω3 with isotope signatures δ 13C <−80‰). Instead, the FA profiles of H. disjuncta suggested that sulphide-oxidising bacteria constituted the main diet of this nematode. Therefore, HMMV can be regarded as a persistent deep-sea cold seep, allowing a chemosynthesis-based trophic specialisation by the dominant meiofaunal species inhabiting its sediments. The present investigation, through the determination of the fatty acid profiles, provides the first evidence for trophic specialisation of meiofauna associated with sub-habitats within a cold seep.",
author = "{Van Gaever}, S. and L. Moodley and F. Pasotti and M.J. Houtekamer and J.J. Middelburg and R. Danovaro and A. Vanreusel",
note = "Reporting year: 2009 Metis note: 4492;CEME; ES; file:///L:/Endnotedatabases/NIOOPUB/pdfs/PDFS2009\VanGaever_ea_4492.pdf",
year = "2009",
doi = "10.1007/s00227-009-1170-9",
language = "English",
volume = "156",
pages = "1289--1296",
journal = "Marine Biology",
issn = "0025-3162",
publisher = "Springer Verlag",
number = "6",

}

RIS

TY - JOUR

T1 - Trophic specialisation of metazoan meiofauna at the Håkon Mosby Mud Volcano: fatty acid biomarker isotope evidence

AU - Van Gaever,S.

AU - Moodley,L.

AU - Pasotti,F.

AU - Houtekamer,M.J.

AU - Middelburg,J.J.

AU - Danovaro,R.

AU - Vanreusel,A.

N1 - Reporting year: 2009 Metis note: 4492;CEME; ES; file:///L:/Endnotedatabases/NIOOPUB/pdfs/PDFS2009\VanGaever_ea_4492.pdf

PY - 2009

Y1 - 2009

N2 - We report the results of a detailed investigation on the trophoecology of two dominant meiofaunal species at the Håkon Mosby Mud Volcano (HMMV), a deep-sea cold methane-venting seep. Analyses of fatty acids (FAs) and their stable carbon isotopes were used to determine the importance of chemosynthetic nutritional pathways for the dominant copepod species (morphologically very similar to Tisbe wilsoni) inhabiting the volcano’s centre and the abundant nematode Halomonhystera disjuncta from the surrounding microbial mats. The strong dominance of bacterial biomarkers (16:1ω7c, 18:1ω7c and 16:1ω8c) coupled with their individual light carbon isotopes signatures (δ 13C ranging from −52 to −81‰) and the lack of symbiotic relationships with prokaryotes (as revealed by molecular analyses and fluorescent in situ hybridisation) indicated that chemosynthetically derived carbon constitutes the main diet of both species. However, the copepod showed a stronger reliance on the utilisation of methanotrophic bacteria and contained polyunsaturated FAs of bacterial origin (20:5ω3 and 22:6ω3 with isotope signatures δ 13C <−80‰). Instead, the FA profiles of H. disjuncta suggested that sulphide-oxidising bacteria constituted the main diet of this nematode. Therefore, HMMV can be regarded as a persistent deep-sea cold seep, allowing a chemosynthesis-based trophic specialisation by the dominant meiofaunal species inhabiting its sediments. The present investigation, through the determination of the fatty acid profiles, provides the first evidence for trophic specialisation of meiofauna associated with sub-habitats within a cold seep.

AB - We report the results of a detailed investigation on the trophoecology of two dominant meiofaunal species at the Håkon Mosby Mud Volcano (HMMV), a deep-sea cold methane-venting seep. Analyses of fatty acids (FAs) and their stable carbon isotopes were used to determine the importance of chemosynthetic nutritional pathways for the dominant copepod species (morphologically very similar to Tisbe wilsoni) inhabiting the volcano’s centre and the abundant nematode Halomonhystera disjuncta from the surrounding microbial mats. The strong dominance of bacterial biomarkers (16:1ω7c, 18:1ω7c and 16:1ω8c) coupled with their individual light carbon isotopes signatures (δ 13C ranging from −52 to −81‰) and the lack of symbiotic relationships with prokaryotes (as revealed by molecular analyses and fluorescent in situ hybridisation) indicated that chemosynthetically derived carbon constitutes the main diet of both species. However, the copepod showed a stronger reliance on the utilisation of methanotrophic bacteria and contained polyunsaturated FAs of bacterial origin (20:5ω3 and 22:6ω3 with isotope signatures δ 13C <−80‰). Instead, the FA profiles of H. disjuncta suggested that sulphide-oxidising bacteria constituted the main diet of this nematode. Therefore, HMMV can be regarded as a persistent deep-sea cold seep, allowing a chemosynthesis-based trophic specialisation by the dominant meiofaunal species inhabiting its sediments. The present investigation, through the determination of the fatty acid profiles, provides the first evidence for trophic specialisation of meiofauna associated with sub-habitats within a cold seep.

U2 - 10.1007/s00227-009-1170-9

DO - 10.1007/s00227-009-1170-9

M3 - Article

VL - 156

SP - 1289

EP - 1296

JO - Marine Biology

T2 - Marine Biology

JF - Marine Biology

SN - 0025-3162

IS - 6

ER -

ID: 345181