• PDF

    257 KB, PDF-document


A variety of mutational mechanisms shape the dynamic architecture of human genomes and occasionally result in congenital defects and disease. Here, we used genome-wide long mate-pair sequencing to systematically screen for inherited and de novo structural variation in a trio including a child with severe congenital abnormalities. We identified 4321 inherited structural variants and 17 de novo rearrangements. We characterized the de novo structural changes to the base-pair level revealing a complex series of balanced inter- and intra-chromosomal rearrangements consisting of 12 breakpoints involving chromosomes 1, 4 and 10. Detailed inspection of breakpoint regions indicated that a series of simultaneous double-stranded DNA breaks caused local shattering of chromosomes. Fusion of the resulting chromosomal fragments involved non-homologous end joining, since junction points displayed limited or no homology and small insertions and deletions. The pattern of random joining of chromosomal fragments that we observe here strongly resembles the somatic rearrangement patterns--termed chromothripsis--that have recently been described in deranged cancer cells. We conclude that a similar mechanism may also drive the formation of de novo structural variation in the germline. [KEYWORDS: Base Sequence, Child, Chromosome Aberrations, Chromosome Breakage, Chromosomes, Human, Pair 1/genetics, Chromosomes, Human, Pair 10/genetics, Chromosomes, Human, Pair 4/genetics, Computational Biology, Female, Gene Order, Gene Rearrangement/ genetics, Germ Cells, Humans, Male, Models, Genetic, Molecular Sequence Data, Sequence Analysis, DNA]
Original languageEnglish
JournalHuman Molecular Genetics
Journal publication date2011

ID: 223673