High quality monitoring data are vital for tracking and understanding the causes of ecosystem change. We present a potentially powerful approach for phytoplankton and aquatic ecosystem monitoring, based on integration of scanning flow-cytometry for the characterization and counting of algal cells with multiparametric vertical water profiling. This approach affords high-frequency data on phytoplankton abundance, functional traits and diversity, coupled with the characterization of environmental conditions for growth over the vertical structure of a deep water body. Data from a pilot study revealed effects of an environmental disturbance event on the phytoplankton community in Lake Lugano (Switzerland), characterized by a reduction in cytometry-based functional diversity and by a period of cyanobacterial dominance. These changes were missed by traditional limnological methods, employed in parallel to high-frequency monitoring. Modeling of phytoplankton functional diversity revealed the importance of integrated spatiotemporal data, including circadian time-lags and variability over the water column, to understand the drivers of diversity and dynamic processes. The approach described represents progress toward an automated and trait-based analysis of phytoplankton natural communities. Streamlining of high-frequency measurements may represent a resource for understanding, modeling and managing aquatic ecosystems under impact of environmental change, yielding insight into processes governing phytoplankton community resistance and resilience.
Original languageEnglish
JournalEnvironmental Science and Technology
Journal publication date2011

ID: 166001