• PDF

    279 KB, PDF-document


We investigated the presumption that wind-wave exposure is a major regulator of vegetation distribution within lakes. Along a 675-km stretch of shore in northern Lake Victoria (Uganda), the pattern of vegetation distribution in relation to shoreline features, and the variation of shoreline swamp area along a gradient of wave exposure were examined. The ability of wave exposure, when combined with bay morphometric characteristics, to predict the lakeward limit of vegetation distribution was assessed. Data were collected through a shoreline survey and from maps. Maximum effective fetch, computed from topographic maps, was used as a surrogate for wave exposure. Our results reinforce and amplify the notion that wave exposure is an important regulator of the within-lake distribution of vegetation. We found shoreline plants to either occupy stretches of shore shielded by coastal islands or hidden by convolutions of the lake margin. The area of shoreline swamps declined exponentially with increasing wave exposure. Of the coastal characteristics examined, bay area had the strongest influence on the lakeward expansion of vegetation. Wave exposure acting together with bay area, accounted for 64.4% of the variance in the limit of lakeward vegetation advancement.
Original languageEnglish
JournalJournal of Tropical Ecology
Journal publication date2007

ID: 381988