Many induced responses in plants are systemic. Therefore, root-induced responses may alter leaf quality for shoot herbivores. Previously, we found that root and shoot application of jasmonic acid (JA) to feral Brassica oleracea both induced glucosinolates in the leaves. However, the types of glucosinolates that increased in root- and shoot induced plants were different. Here we analyse whether primary metabolites, such as sugars and amino acids, are also differentially affected. Moreover, we test whether chemical differences in root- and shoot-induced plants differentially affect growth of the generalist Mamestra brassicae and the specialist Pieris rapae. Comprehensive analysis of glucosinolates, amino acid and sugars with principal component analysis revealed that leaf chemical profiles were affected both by JA application and by the organ that was induced. Shoot-induction increased indole glucosinolates, whereas root-induction induced aliphatic glucosinolates in the leaves. Leaves of shoot-induced plants had lower total sugar and total amino acid levels, whereas in root-induced plants only total sugar levels were significantly decreased. (Iso)leucine responded significantly different from the general trend, which allowed us to discuss the potential role of Myb transcription factors which are coordinating JA-induced glucosinolate and amino acid responses in Arabidopsis thaliana. Both M. brassicae and P. rapae grew the slowest on leaves of shoot-induced plants. M. brassicae growth and survival was also reduced on root-induced plants, whereas P. rapae growth on these plants was similar to that on controls. Specialist and generalist herbivores thus are differentially affected by the chemical changes after root and shoot-JA application.
Original languageEnglish
JournalPlant Signaling & Behavior
Journal publication date2008

ID: 172314