• PDF

    Final published version, 346 KB, PDF-document

    Request copy


The consumption of estuarine copepods by juvenile herring and sprat during estuarine residency was estimated using fish biomass data and daily rations calculated from two models of feeding in fish: a bioenergetic model and a gastric evacuation model. The bioenergetic model predicted daily rations that were, on average, three times higher than those estimated by a model based on field records of stomach contents. The biomass of herring and sprat in the estuary was negatively correlated with the daily ration suggesting that the clupeid fish populations were resource-limited. Copepod production decreased towards the winter and peaked in spring and summer. The relative importance of predation changed seasonally in function of the migration pattern of herring and sprat. In the spring and the summer, in situ production ofcopepod biomass was higher than the in situ consumption by fish. During the fall and the winter, consumption exceeded production. This suggests that top–down control exerted by marine pelagic fish may be an important force structuring estuarine copepod populations. [KEYWORDS: top–down control ; predation ; consumption ; production ; herring ; sprat ; calanoid copepods ; estuary ; Eurytemora affinis ; Acartia tonsa]
Original languageEnglish
Pages (from-to)225-235
StatePublished - 2005

ID: 111214