1. Plants and insects are part of a complex multitrophic environment, in which they closely interact. However, most of the studies have been focused mainly on bi-tritrophic above-ground subsystems, hindering our understanding of the processes that affect multitrophic interactions in a more realistic framework. 2. We studied whether root herbivory by the fly Delia radicum can influence the development of the leaf feeder Pieris brassicae, its parasitoid Cotesia glomerata and its hyperparasitoid Lysibia nana, through changes in primary and secondary plant compounds. 3. In the presence of root herbivory, the development time of the leaf herbivore and the parasitoid significantly increased, and the adult size of the parasitoid and the hyperparasitoid were significantly reduced. The effects were stronger at low root fly densities than at high densities. 4. Higher glucosinolate (sinigrin) levels were recorded in plants exposed to below-ground herbivory, suggesting that the reduced performance of the above-ground insects was via reduced plant quality. Sinigrin contents were highest in plants exposed to low root fly densities, intermediate in plants exposed to high root fly densities and lowest in plants that were not exposed to root herbivory. 5. Our results show, for the first time, that root herbivory via changes in plant quality can reduce the performance of an above-ground multitrophic level food chain. This underlines the importance of integrating a broader range of above- and below-ground organisms to facilitate a better understanding of complex multitrophic interactions and interrelationships. [KEYWORDS: above–below-ground interactions ; Cotesia glomerata ; Lysibia nana ; Pieris brassicae ; plant–insect interactions]
Original languageEnglish
JournalJournal of Animal Ecology
Journal publication date2005

ID: 257815